Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- Helper
- Optimization enabled
- true
- Compiler version
- v0.7.6+commit.7338295f
- Optimization runs
- 10
- EVM Version
- istanbul
- Verified at
- 2024-06-07T13:15:08.042320Z
contracts/Helper.sol
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.7.6; pragma abicoder v2; //Libraries import { Math } from "@openzeppelin/contracts-7/math/Math.sol"; // max(), min(), and average import { SafeMath } from "@openzeppelin/contracts-7/math/SafeMath.sol"; //Uniswap import { FullMath } from "@uniswap/v3-core/contracts/libraries/FullMath.sol"; import { LiquidityAmounts } from "@uniswap/v3-periphery/contracts/libraries/LiquidityAmounts.sol"; import { TickMath } from "@uniswap/v3-core/contracts/libraries/TickMath.sol"; import { PositionKey } from "@uniswap/v3-periphery/contracts/libraries/PositionKey.sol"; //Algebra import { PositionKey as AlgebrPositionKey } from "@cryptoalgebra/periphery/contracts/libraries/PositionKey.sol"; import { TickMath as AlgberaTickMath } from "@cryptoalgebra/core/contracts/libraries/TickMath.sol"; import { LiquidityAmounts as AlgebraLiquidityAmounts } from "@cryptoalgebra/periphery/contracts/libraries/LiquidityAmounts.sol"; import { FullMath as AlgebraFullMath } from "@cryptoalgebra/core/contracts/libraries/FullMath.sol"; //Pool Interfaces import { IUniswapV3Pool } from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol"; import { IAlgebraPool } from "@cryptoalgebra/core/contracts/interfaces/IAlgebraPool.sol"; import { IPoolSharkOracle } from "./interfaces/IPoolSharkOracle.sol"; import { IHelper } from "./interfaces/IHelper.sol"; import { IFeeManager } from "./interfaces/IFeeManager.sol"; contract Helper { using SafeMath for uint256; uint256 internal constant FEE_DIVISOR = 100_00; function getShares( uint256 _totalSupply, uint256 total0, uint256 total1, uint256 amount0Desired, uint256 amount1Desired, uint256 amount0Min, uint256 amount1Min, uint256 minShares ) external pure returns (uint256 shares, uint256 amount0Used, uint256 amount1Used) { // If total supply > 0, vault can't be empty. assert(_totalSupply == 0 || total0 > 0 || total1 > 0); if (_totalSupply == 0) { // For first deposit, just use the amounts desired amount0Used = amount0Desired; amount1Used = amount1Desired; shares = Math.max(amount0Used, amount1Used); require(shares >= minShares, "M"); } else if (total0 == 0) { shares = FullMath.mulDiv(amount1Desired, _totalSupply, total1); amount1Used = FullMath.mulDivRoundingUp( shares, total1, _totalSupply ); } else if (total1 == 0) { shares = FullMath.mulDiv(amount0Desired, _totalSupply, total0); amount0Used = FullMath.mulDivRoundingUp( shares, total0, _totalSupply ); } else { uint256 cross = Math.min( amount0Desired.mul(total1), amount1Desired.mul(total0) ); // If cross is zero, this means that the inputted ratio is totally wrong // and must be adjusted to better match the vault's held ratio. // This pretty much only happens if all of the vault's holdings are in one token, // and the user wants to exclusively deposit the other token. require(cross > 0, "C"); // Round up amounts // cross - 1 can be unchecked since above we require cross != 0 // total1 and total0 are also both > 0 amount0Used = ((cross - 1) / total1) + 1; amount1Used = ((cross - 1) / total0) + 1; shares = FullMath.mulDiv(cross, _totalSupply, total0) / total1; } // Make sure deposit meets slippage requirements. // If amount0Used < amount0Min or amount1Used < amount1Min, // there has been too much slippage. require(shares > 0, "0 shares"); require(amount0Used >= amount0Min, "0"); require(amount1Used >= amount1Min, "1"); } /// @dev revert if volatility is above acceptable levels /// (mainly used to prevent flashloan attacks) /// @param currentTick Current pool tick function uniVolatilityCheck( int24 currentTick, uint32 _twapInterval, int24 _maxTickChange, address pool ) external view { // Get TWAP tick uint32[] memory secondsAgos = new uint32[](2); secondsAgos[0] = _twapInterval; // tickCumulatives is basically where the tick was as of twapInterval seconds ago (int56[] memory tickCumulatives, ) = IUniswapV3Pool(pool).observe( secondsAgos ); // tickCumulatives[1] will always be greater than [0] // so no need to check for underflow or division overflow here. int24 twapTick = int24( (tickCumulatives[1] - tickCumulatives[0]) / _twapInterval ); // Make sure currentTick is not more than maxTickChange ticks away from twapTick // No SafeMath here--even if a compromised governance contract set _maxTickChange to a very high value, // it would only wrap around and cause this check to fail. require( currentTick <= twapTick + _maxTickChange && currentTick >= twapTick - _maxTickChange, "V" ); } /// @dev revert if volatility is above acceptable levels /// (mainly used to prevent flashloan attacks) /// @param currentTick Current pool tick function algebraVolatilityCheck( int24 currentTick, uint32 _twapInterval, int24 _maxTickChange, address pool ) external view { // Get TWAP tick uint32[] memory secondsAgos = new uint32[](2); secondsAgos[0] = _twapInterval; // tickCumulatives is basically where the tick was as of twapInterval seconds ago (int56[] memory tickCumulatives, , , ) = IAlgebraPool(pool) .getTimepoints(secondsAgos); // tickCumulatives[1] will always be greater than [0] // so no need to check for underflow or division overflow here. int24 twapTick = int24( (tickCumulatives[1] - tickCumulatives[0]) / _twapInterval ); // Make sure currentTick is not more than maxTickChange ticks away from twapTick // No SafeMath here--even if a compromised governance contract set _maxTickChange to a very high value, // it would only wrap around and cause this check to fail. require( currentTick <= twapTick + _maxTickChange && currentTick >= twapTick - _maxTickChange, "V" ); } /// @dev revert if volatility is above acceptable levels /// (mainly used to prevent flashloan attacks) /// @param currentTick Current pool tick function poolsharkCheckVolatility( int24 currentTick, uint32 _twapInterval, int24 _maxTickChange, address pool ) external view { // SLOADS for efficiency // Get TWAP tick uint32[] memory secondsAgos = new uint32[](2); secondsAgos[0] = _twapInterval; // tickCumulatives is basically where the tick was as of twapInterval seconds ago (int56[] memory tickCumulatives, , , , ) = IPoolSharkOracle(pool) .sample(secondsAgos); // tickCumulatives[1] will always be greater than tickCumulatives[0] int24 twapTick = int24( (tickCumulatives[1] - tickCumulatives[0]) / _twapInterval ); // Make sure currentTick is not more than maxTickChange ticks away from twapTick // No SafeMath here--even if a compromised governance contract set _maxTickChange to a very high value, // it would only wrap around and cause this check to fail. require( currentTick <= twapTick + _maxTickChange && currentTick >= twapTick - _maxTickChange, "V" ); } struct UniswapBalanceCalculationData { uint160 sqrtPriceX96; uint256 totalFees; uint256 feeSubtract; uint256 positionCount; uint128 liquidity; uint256 fees0; uint256 fees1; uint256 amt0; uint256 amt1; } function getUniswapVaultBalances( uint256 total0, uint256 total1, IHelper.NewLiquidityPositions[] memory positions, address pool, address feeManager ) external view returns (uint256, uint256) { UniswapBalanceCalculationData memory data; (data.sqrtPriceX96, , , , , , ) = IUniswapV3Pool(pool).slot0(); data.totalFees = IFeeManager(feeManager).vaultTotalFees(msg.sender); data.feeSubtract = FEE_DIVISOR - data.totalFees; data.positionCount = positions.length; for (uint256 i; i != data.positionCount; ++i) { (data.liquidity, , , data.fees0, data.fees1) = IUniswapV3Pool(pool) .positions( PositionKey.compute( msg.sender, positions[i].lowerTick, positions[i].upperTick ) ); (data.amt0, data.amt1) = LiquidityAmounts.getAmountsForLiquidity( data.sqrtPriceX96, TickMath.getSqrtRatioAtTick(positions[i].lowerTick), TickMath.getSqrtRatioAtTick(positions[i].upperTick), data.liquidity ); total0 = total0.add( data.amt0.add( FullMath.mulDiv(data.fees0, data.feeSubtract, FEE_DIVISOR) ) ); total1 = total1.add( data.amt1.add( FullMath.mulDiv(data.fees1, data.feeSubtract, FEE_DIVISOR) ) ); } return (total0, total1); } struct AlgebraBalanceCalculationData { uint256 totalFees; uint256 feeSubtract; uint256 positionCount; uint128 liquidity; uint128 fees0; uint128 fees1; uint256 amt0; uint256 amt1; } function getAlgebraVaultBalances( uint256 total0, uint256 total1, IHelper.NewLiquidityPositions[] memory positions, address pool, address feeManager, uint160 sqrtPriceX96 ) external view returns (uint256, uint256) { AlgebraBalanceCalculationData memory data; data.totalFees = IFeeManager(feeManager).vaultTotalFees(msg.sender); data.feeSubtract = FEE_DIVISOR - data.totalFees; data.positionCount = positions.length; for (uint256 i; i != data.positionCount; ++i) { (data.liquidity, , , , data.fees0, data.fees1) = IAlgebraPool(pool) .positions( AlgebrPositionKey.compute( msg.sender, positions[i].lowerTick, positions[i].upperTick ) ); (data.amt0, data.amt1) = AlgebraLiquidityAmounts .getAmountsForLiquidity( sqrtPriceX96, AlgberaTickMath.getSqrtRatioAtTick(positions[i].lowerTick), AlgberaTickMath.getSqrtRatioAtTick(positions[i].upperTick), data.liquidity ); total0 = total0.add( data.amt0.add( AlgebraFullMath.mulDiv( data.fees0, data.feeSubtract, FEE_DIVISOR ) ) ); total1 = total1.add( data.amt1.add( AlgebraFullMath.mulDiv( data.fees1, data.feeSubtract, FEE_DIVISOR ) ) ); } return (total0, total1); } }
@cryptoalgebra/core/contracts/interfaces/IAlgebraPool.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IAlgebraPoolImmutables.sol'; import './pool/IAlgebraPoolState.sol'; import './pool/IAlgebraPoolDerivedState.sol'; import './pool/IAlgebraPoolActions.sol'; import './pool/IAlgebraPoolPermissionedActions.sol'; import './pool/IAlgebraPoolEvents.sol'; /** * @title The interface for a Algebra Pool * @dev The pool interface is broken up into many smaller pieces. * Credit to Uniswap Labs under GPL-2.0-or-later license: * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces */ interface IAlgebraPool is IAlgebraPoolImmutables, IAlgebraPoolState, IAlgebraPoolDerivedState, IAlgebraPoolActions, IAlgebraPoolPermissionedActions, IAlgebraPoolEvents { // used only for combining interfaces }
@cryptoalgebra/core/contracts/interfaces/IDataStorageOperator.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; pragma abicoder v2; import '../libraries/AdaptiveFee.sol'; interface IDataStorageOperator { event FeeConfiguration(AdaptiveFee.Configuration feeConfig); /** * @notice Returns data belonging to a certain timepoint * @param index The index of timepoint in the array * @dev There is more convenient function to fetch a timepoint: getTimepoints(). Which requires not an index but seconds * @return initialized Whether the timepoint has been initialized and the values are safe to use, * blockTimestamp The timestamp of the observation, * tickCumulative The tick multiplied by seconds elapsed for the life of the pool as of the timepoint timestamp, * secondsPerLiquidityCumulative The seconds per in range liquidity for the life of the pool as of the timepoint timestamp, * volatilityCumulative Cumulative standard deviation for the life of the pool as of the timepoint timestamp, * averageTick Time-weighted average tick, * volumePerLiquidityCumulative Cumulative swap volume per liquidity for the life of the pool as of the timepoint timestamp */ function timepoints( uint256 index ) external view returns ( bool initialized, uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulative, uint88 volatilityCumulative, int24 averageTick, uint144 volumePerLiquidityCumulative ); /// @notice Initialize the dataStorage array by writing the first slot. Called once for the lifecycle of the timepoints array /// @param time The time of the dataStorage initialization, via block.timestamp truncated to uint32 /// @param tick Initial tick function initialize(uint32 time, int24 tick) external; /// @dev Reverts if an timepoint at or before the desired timepoint timestamp does not exist. /// 0 may be passed as `secondsAgo' to return the current cumulative values. /// If called with a timestamp falling between two timepoints, returns the counterfactual accumulator values /// at exactly the timestamp between the two timepoints. /// @param time The current block timestamp /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an timepoint /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return tickCumulative The cumulative tick since the pool was first initialized, as of `secondsAgo` /// @return secondsPerLiquidityCumulative The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of `secondsAgo` /// @return volatilityCumulative The cumulative volatility value since the pool was first initialized, as of `secondsAgo` /// @return volumePerAvgLiquidity The cumulative volume per liquidity value since the pool was first initialized, as of `secondsAgo` function getSingleTimepoint( uint32 time, uint32 secondsAgo, int24 tick, uint16 index, uint128 liquidity ) external view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulative, uint112 volatilityCumulative, uint256 volumePerAvgLiquidity); /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos` /// @dev Reverts if `secondsAgos` > oldest timepoint /// @param time The current block.timestamp /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an timepoint /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return tickCumulatives The cumulative tick since the pool was first initialized, as of each `secondsAgo` /// @return secondsPerLiquidityCumulatives The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo` /// @return volatilityCumulatives The cumulative volatility values since the pool was first initialized, as of each `secondsAgo` /// @return volumePerAvgLiquiditys The cumulative volume per liquidity values since the pool was first initialized, as of each `secondsAgo` function getTimepoints( uint32 time, uint32[] memory secondsAgos, int24 tick, uint16 index, uint128 liquidity ) external view returns ( int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulatives, uint112[] memory volatilityCumulatives, uint256[] memory volumePerAvgLiquiditys ); /// @notice Returns average volatility in the range from time-WINDOW to time /// @param time The current block.timestamp /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return TWVolatilityAverage The average volatility in the recent range /// @return TWVolumePerLiqAverage The average volume per liquidity in the recent range function getAverages( uint32 time, int24 tick, uint16 index, uint128 liquidity ) external view returns (uint112 TWVolatilityAverage, uint256 TWVolumePerLiqAverage); /// @notice Writes an dataStorage timepoint to the array /// @dev Writable at most once per block. Index represents the most recently written element. index must be tracked externally. /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param blockTimestamp The timestamp of the new timepoint /// @param tick The active tick at the time of the new timepoint /// @param liquidity The total in-range liquidity at the time of the new timepoint /// @param volumePerLiquidity The gmean(volumes)/liquidity at the time of the new timepoint /// @return indexUpdated The new index of the most recently written element in the dataStorage array function write( uint16 index, uint32 blockTimestamp, int24 tick, uint128 liquidity, uint128 volumePerLiquidity ) external returns (uint16 indexUpdated); /// @notice Changes fee configuration for the pool function changeFeeConfiguration(AdaptiveFee.Configuration calldata feeConfig) external; /// @notice Calculates gmean(volume/liquidity) for block /// @param liquidity The current in-range pool liquidity /// @param amount0 Total amount of swapped token0 /// @param amount1 Total amount of swapped token1 /// @return volumePerLiquidity gmean(volume/liquidity) capped by 100000 << 64 function calculateVolumePerLiquidity(uint128 liquidity, int256 amount0, int256 amount1) external pure returns (uint128 volumePerLiquidity); /// @return windowLength Length of window used to calculate averages function window() external view returns (uint32 windowLength); /// @notice Calculates fee based on combination of sigmoids /// @param time The current block.timestamp /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return fee The fee in hundredths of a bip, i.e. 1e-6 function getFee(uint32 time, int24 tick, uint16 index, uint128 liquidity) external view returns (uint16 fee); }
@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolActions { /** * @notice Sets the initial price for the pool * @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value * @param price the initial sqrt price of the pool as a Q64.96 */ function initialize(uint160 price) external; /** * @notice Adds liquidity for the given recipient/bottomTick/topTick position * @dev The caller of this method receives a callback in the form of IAlgebraMintCallback# AlgebraMintCallback * in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends * on bottomTick, topTick, the amount of liquidity, and the current price. * @param sender The address which will receive potential surplus of paid tokens * @param recipient The address for which the liquidity will be created * @param bottomTick The lower tick of the position in which to add liquidity * @param topTick The upper tick of the position in which to add liquidity * @param amount The desired amount of liquidity to mint * @param data Any data that should be passed through to the callback * @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback * @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback * @return liquidityActual The actual minted amount of liquidity */ function mint( address sender, address recipient, int24 bottomTick, int24 topTick, uint128 amount, bytes calldata data ) external returns ( uint256 amount0, uint256 amount1, uint128 liquidityActual ); /** * @notice Collects tokens owed to a position * @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. * Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or * amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the * actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. * @param recipient The address which should receive the fees collected * @param bottomTick The lower tick of the position for which to collect fees * @param topTick The upper tick of the position for which to collect fees * @param amount0Requested How much token0 should be withdrawn from the fees owed * @param amount1Requested How much token1 should be withdrawn from the fees owed * @return amount0 The amount of fees collected in token0 * @return amount1 The amount of fees collected in token1 */ function collect( address recipient, int24 bottomTick, int24 topTick, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /** * @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position * @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 * @dev Fees must be collected separately via a call to #collect * @param bottomTick The lower tick of the position for which to burn liquidity * @param topTick The upper tick of the position for which to burn liquidity * @param amount How much liquidity to burn * @return amount0 The amount of token0 sent to the recipient * @return amount1 The amount of token1 sent to the recipient */ function burn( int24 bottomTick, int24 topTick, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /** * @notice Swap token0 for token1, or token1 for token0 * @dev The caller of this method receives a callback in the form of IAlgebraSwapCallback# AlgebraSwapCallback * @param recipient The address to receive the output of the swap * @param zeroToOne The direction of the swap, true for token0 to token1, false for token1 to token0 * @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) * @param limitSqrtPrice The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this * value after the swap. If one for zero, the price cannot be greater than this value after the swap * @param data Any data to be passed through to the callback. If using the Router it should contain * SwapRouter#SwapCallbackData * @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive * @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive */ function swap( address recipient, bool zeroToOne, int256 amountSpecified, uint160 limitSqrtPrice, bytes calldata data ) external returns (int256 amount0, int256 amount1); /** * @notice Swap token0 for token1, or token1 for token0 (tokens that have fee on transfer) * @dev The caller of this method receives a callback in the form of I AlgebraSwapCallback# AlgebraSwapCallback * @param sender The address called this function (Comes from the Router) * @param recipient The address to receive the output of the swap * @param zeroToOne The direction of the swap, true for token0 to token1, false for token1 to token0 * @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) * @param limitSqrtPrice The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this * value after the swap. If one for zero, the price cannot be greater than this value after the swap * @param data Any data to be passed through to the callback. If using the Router it should contain * SwapRouter#SwapCallbackData * @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive * @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive */ function swapSupportingFeeOnInputTokens( address sender, address recipient, bool zeroToOne, int256 amountSpecified, uint160 limitSqrtPrice, bytes calldata data ) external returns (int256 amount0, int256 amount1); /** * @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback * @dev The caller of this method receives a callback in the form of IAlgebraFlashCallback# AlgebraFlashCallback * @dev All excess tokens paid in the callback are distributed to liquidity providers as an additional fee. So this method can be used * to donate underlying tokens to currently in-range liquidity providers by calling with 0 amount{0,1} and sending * the donation amount(s) from the callback * @param recipient The address which will receive the token0 and token1 amounts * @param amount0 The amount of token0 to send * @param amount1 The amount of token1 to send * @param data Any data to be passed through to the callback */ function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; }
@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { }
@uniswap/v3-core/contracts/interfaces/pool/IUniswapV3PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; }
@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /** * @title Pool state that is not stored * @notice Contains view functions to provide information about the pool that is computed rather than stored on the * blockchain. The functions here may have variable gas costs. * @dev Credit to Uniswap Labs under GPL-2.0-or-later license: * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces */ interface IAlgebraPoolDerivedState { /** * @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp * @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing * the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, * you must call it with secondsAgos = [3600, 0]. * @dev The time weighted average tick represents the geometric time weighted average price of the pool, in * log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. * @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned * @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp * @return secondsPerLiquidityCumulatives Cumulative seconds per liquidity-in-range value as of each `secondsAgos` * from the current block timestamp * @return volatilityCumulatives Cumulative standard deviation as of each `secondsAgos` * @return volumePerAvgLiquiditys Cumulative swap volume per liquidity as of each `secondsAgos` */ function getTimepoints(uint32[] calldata secondsAgos) external view returns ( int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulatives, uint112[] memory volatilityCumulatives, uint256[] memory volumePerAvgLiquiditys ); /** * @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range * @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. * I.e., snapshots cannot be compared if a position is not held for the entire period between when the first * snapshot is taken and the second snapshot is taken. * @param bottomTick The lower tick of the range * @param topTick The upper tick of the range * @return innerTickCumulative The snapshot of the tick accumulator for the range * @return innerSecondsSpentPerLiquidity The snapshot of seconds per liquidity for the range * @return innerSecondsSpent The snapshot of the number of seconds during which the price was in this range */ function getInnerCumulatives(int24 bottomTick, int24 topTick) external view returns ( int56 innerTickCumulative, uint160 innerSecondsSpentPerLiquidity, uint32 innerSecondsSpent ); }
@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolEvents { /** * @notice Emitted exactly once by a pool when #initialize is first called on the pool * @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize * @param price The initial sqrt price of the pool, as a Q64.96 * @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool */ event Initialize(uint160 price, int24 tick); /** * @notice Emitted when liquidity is minted for a given position * @param sender The address that minted the liquidity * @param owner The owner of the position and recipient of any minted liquidity * @param bottomTick The lower tick of the position * @param topTick The upper tick of the position * @param liquidityAmount The amount of liquidity minted to the position range * @param amount0 How much token0 was required for the minted liquidity * @param amount1 How much token1 was required for the minted liquidity */ event Mint( address sender, address indexed owner, int24 indexed bottomTick, int24 indexed topTick, uint128 liquidityAmount, uint256 amount0, uint256 amount1 ); /** * @notice Emitted when fees are collected by the owner of a position * @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees * @param owner The owner of the position for which fees are collected * @param recipient The address that received fees * @param bottomTick The lower tick of the position * @param topTick The upper tick of the position * @param amount0 The amount of token0 fees collected * @param amount1 The amount of token1 fees collected */ event Collect(address indexed owner, address recipient, int24 indexed bottomTick, int24 indexed topTick, uint128 amount0, uint128 amount1); /** * @notice Emitted when a position's liquidity is removed * @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect * @param owner The owner of the position for which liquidity is removed * @param bottomTick The lower tick of the position * @param topTick The upper tick of the position * @param liquidityAmount The amount of liquidity to remove * @param amount0 The amount of token0 withdrawn * @param amount1 The amount of token1 withdrawn */ event Burn(address indexed owner, int24 indexed bottomTick, int24 indexed topTick, uint128 liquidityAmount, uint256 amount0, uint256 amount1); /** * @notice Emitted by the pool for any swaps between token0 and token1 * @param sender The address that initiated the swap call, and that received the callback * @param recipient The address that received the output of the swap * @param amount0 The delta of the token0 balance of the pool * @param amount1 The delta of the token1 balance of the pool * @param price The sqrt(price) of the pool after the swap, as a Q64.96 * @param liquidity The liquidity of the pool after the swap * @param tick The log base 1.0001 of price of the pool after the swap */ event Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 price, uint128 liquidity, int24 tick); /** * @notice Emitted by the pool for any flashes of token0/token1 * @param sender The address that initiated the swap call, and that received the callback * @param recipient The address that received the tokens from flash * @param amount0 The amount of token0 that was flashed * @param amount1 The amount of token1 that was flashed * @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee * @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee */ event Flash(address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1); /** * @notice Emitted when the community fee is changed by the pool * @param communityFee0New The updated value of the token0 community fee percent * @param communityFee1New The updated value of the token1 community fee percent */ event CommunityFee(uint8 communityFee0New, uint8 communityFee1New); /** * @notice Emitted when the tick spacing changes * @param newTickSpacing The updated value of the new tick spacing */ event TickSpacing(int24 newTickSpacing); /** * @notice Emitted when new activeIncentive is set * @param virtualPoolAddress The address of a virtual pool associated with the current active incentive */ event Incentive(address indexed virtualPoolAddress); /** * @notice Emitted when the fee changes * @param fee The value of the token fee */ event Fee(uint16 fee); /** * @notice Emitted when the LiquidityCooldown changes * @param liquidityCooldown The value of locktime for added liquidity */ event LiquidityCooldown(uint32 liquidityCooldown); }
@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import '../IDataStorageOperator.sol'; /// @title Pool state that never changes /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolImmutables { /** * @notice The contract that stores all the timepoints and can perform actions with them * @return The operator address */ function dataStorageOperator() external view returns (address); /** * @notice The contract that deployed the pool, which must adhere to the IAlgebraFactory interface * @return The contract address */ function factory() external view returns (address); /** * @notice The first of the two tokens of the pool, sorted by address * @return The token contract address */ function token0() external view returns (address); /** * @notice The second of the two tokens of the pool, sorted by address * @return The token contract address */ function token1() external view returns (address); /** * @notice The maximum amount of position liquidity that can use any tick in the range * @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and * also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool * @return The max amount of liquidity per tick */ function maxLiquidityPerTick() external view returns (uint128); }
@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolPermissionedActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /** * @title Permissioned pool actions * @notice Contains pool methods that may only be called by the factory owner or tokenomics * @dev Credit to Uniswap Labs under GPL-2.0-or-later license: * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces */ interface IAlgebraPoolPermissionedActions { /** * @notice Set the community's % share of the fees. Cannot exceed 25% (250) * @param communityFee0 new community fee percent for token0 of the pool in thousandths (1e-3) * @param communityFee1 new community fee percent for token1 of the pool in thousandths (1e-3) */ function setCommunityFee(uint8 communityFee0, uint8 communityFee1) external; /// @notice Set the new tick spacing values. Only factory owner /// @param newTickSpacing The new tick spacing value function setTickSpacing(int24 newTickSpacing) external; /** * @notice Sets an active incentive * @param virtualPoolAddress The address of a virtual pool associated with the incentive */ function setIncentive(address virtualPoolAddress) external; /** * @notice Sets new lock time for added liquidity * @param newLiquidityCooldown The time in seconds */ function setLiquidityCooldown(uint32 newLiquidityCooldown) external; }
@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolState { /** * @notice The globalState structure in the pool stores many values but requires only one slot * and is exposed as a single method to save gas when accessed externally. * @return price The current price of the pool as a sqrt(token1/token0) Q64.96 value; * Returns tick The current tick of the pool, i.e. according to the last tick transition that was run; * Returns This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(price) if the price is on a tick * boundary; * Returns fee The last pool fee value in hundredths of a bip, i.e. 1e-6; * Returns timepointIndex The index of the last written timepoint; * Returns communityFeeToken0 The community fee percentage of the swap fee in thousandths (1e-3) for token0; * Returns communityFeeToken1 The community fee percentage of the swap fee in thousandths (1e-3) for token1; * Returns unlocked Whether the pool is currently locked to reentrancy; */ function globalState() external view returns ( uint160 price, int24 tick, uint16 fee, uint16 timepointIndex, uint8 communityFeeToken0, uint8 communityFeeToken1, bool unlocked ); /** * @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool * @dev This value can overflow the uint256 */ function totalFeeGrowth0Token() external view returns (uint256); /** * @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool * @dev This value can overflow the uint256 */ function totalFeeGrowth1Token() external view returns (uint256); /** * @notice The currently in range liquidity available to the pool * @dev This value has no relationship to the total liquidity across all ticks. * Returned value cannot exceed type(uint128).max */ function liquidity() external view returns (uint128); /** * @notice Look up information about a specific tick in the pool * @dev This is a public structure, so the `return` natspec tags are omitted. * @param tick The tick to look up * @return liquidityTotal the total amount of position liquidity that uses the pool either as tick lower or * tick upper; * Returns liquidityDelta how much liquidity changes when the pool price crosses the tick; * Returns outerFeeGrowth0Token the fee growth on the other side of the tick from the current tick in token0; * Returns outerFeeGrowth1Token the fee growth on the other side of the tick from the current tick in token1; * Returns outerTickCumulative the cumulative tick value on the other side of the tick from the current tick; * Returns outerSecondsPerLiquidity the seconds spent per liquidity on the other side of the tick from the current tick; * Returns outerSecondsSpent the seconds spent on the other side of the tick from the current tick; * Returns initialized Set to true if the tick is initialized, i.e. liquidityTotal is greater than 0 * otherwise equal to false. Outside values can only be used if the tick is initialized. * In addition, these values are only relative and must be used only in comparison to previous snapshots for * a specific position. */ function ticks(int24 tick) external view returns ( uint128 liquidityTotal, int128 liquidityDelta, uint256 outerFeeGrowth0Token, uint256 outerFeeGrowth1Token, int56 outerTickCumulative, uint160 outerSecondsPerLiquidity, uint32 outerSecondsSpent, bool initialized ); /** @notice Returns 256 packed tick initialized boolean values. See TickTable for more information */ function tickTable(int16 wordPosition) external view returns (uint256); /** * @notice Returns the information about a position by the position's key * @dev This is a public mapping of structures, so the `return` natspec tags are omitted. * @param key The position's key is a hash of a preimage composed by the owner, bottomTick and topTick * @return liquidityAmount The amount of liquidity in the position; * Returns lastLiquidityAddTimestamp Timestamp of last adding of liquidity; * Returns innerFeeGrowth0Token Fee growth of token0 inside the tick range as of the last mint/burn/poke; * Returns innerFeeGrowth1Token Fee growth of token1 inside the tick range as of the last mint/burn/poke; * Returns fees0 The computed amount of token0 owed to the position as of the last mint/burn/poke; * Returns fees1 The computed amount of token1 owed to the position as of the last mint/burn/poke */ function positions(bytes32 key) external view returns ( uint128 liquidityAmount, uint32 lastLiquidityAddTimestamp, uint256 innerFeeGrowth0Token, uint256 innerFeeGrowth1Token, uint128 fees0, uint128 fees1 ); /** * @notice Returns data about a specific timepoint index * @param index The element of the timepoints array to fetch * @dev You most likely want to use #getTimepoints() instead of this method to get an timepoint as of some amount of time * ago, rather than at a specific index in the array. * This is a public mapping of structures, so the `return` natspec tags are omitted. * @return initialized whether the timepoint has been initialized and the values are safe to use; * Returns blockTimestamp The timestamp of the timepoint; * Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the timepoint timestamp; * Returns secondsPerLiquidityCumulative the seconds per in range liquidity for the life of the pool as of the timepoint timestamp; * Returns volatilityCumulative Cumulative standard deviation for the life of the pool as of the timepoint timestamp; * Returns averageTick Time-weighted average tick; * Returns volumePerLiquidityCumulative Cumulative swap volume per liquidity for the life of the pool as of the timepoint timestamp; */ function timepoints(uint256 index) external view returns ( bool initialized, uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulative, uint88 volatilityCumulative, int24 averageTick, uint144 volumePerLiquidityCumulative ); /** * @notice Returns the information about active incentive * @dev if there is no active incentive at the moment, virtualPool,endTimestamp,startTimestamp would be equal to 0 * @return virtualPool The address of a virtual pool associated with the current active incentive */ function activeIncentive() external view returns (address virtualPool); /** * @notice Returns the lock time for added liquidity */ function liquidityCooldown() external view returns (uint32 cooldownInSeconds); /** * @notice The pool tick spacing * @dev Ticks can only be used at multiples of this value * e.g.: a tickSpacing of 60 means ticks can be initialized every 60th tick, i.e., ..., -120, -60, 0, 60, 120, ... * This value is an int24 to avoid casting even though it is always positive. * @return The tick spacing */ function tickSpacing() external view returns (int24); }
@cryptoalgebra/core/contracts/libraries/AdaptiveFee.sol
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.7.6; import "./Constants.sol"; /// @title AdaptiveFee /// @notice Calculates fee based on combination of sigmoids library AdaptiveFee { // alpha1 + alpha2 + baseFee must be <= type(uint16).max struct Configuration { uint16 alpha1; // max value of the first sigmoid uint16 alpha2; // max value of the second sigmoid uint32 beta1; // shift along the x-axis for the first sigmoid uint32 beta2; // shift along the x-axis for the second sigmoid uint16 gamma1; // horizontal stretch factor for the first sigmoid uint16 gamma2; // horizontal stretch factor for the second sigmoid uint32 volumeBeta; // shift along the x-axis for the outer volume-sigmoid uint16 volumeGamma; // horizontal stretch factor the outer volume-sigmoid uint16 baseFee; // minimum possible fee } /// @notice Calculates fee based on formula: /// baseFee + sigmoidVolume(sigmoid1(volatility, volumePerLiquidity) + sigmoid2(volatility, volumePerLiquidity)) /// maximum value capped by baseFee + alpha1 + alpha2 function getFee( uint88 volatility, uint256 volumePerLiquidity, Configuration memory config ) internal pure returns (uint16 fee) { uint256 sumOfSigmoids = sigmoid( volatility, config.gamma1, config.alpha1, config.beta1 ) + sigmoid(volatility, config.gamma2, config.alpha2, config.beta2); if (sumOfSigmoids > type(uint16).max) { // should be impossible, just in case sumOfSigmoids = type(uint16).max; } return uint16( config.baseFee + sigmoid( volumePerLiquidity, config.volumeGamma, uint16(sumOfSigmoids), config.volumeBeta ) ); // safe since alpha1 + alpha2 + baseFee _must_ be <= type(uint16).max } /// @notice calculates α / (1 + e^( (β-x) / γ)) /// that is a sigmoid with a maximum value of α, x-shifted by β, and stretched by γ /// @dev returns uint256 for fuzzy testing. Guaranteed that the result is not greater than alpha function sigmoid( uint256 x, uint16 g, uint16 alpha, uint256 beta ) internal pure returns (uint256 res) { if (x > beta) { x = x - beta; if (x >= 6 * uint256(g)) return alpha; // so x < 19 bits uint256 g8 = uint256(g) ** 8; // < 128 bits (8*16) uint256 ex = exp(x, g, g8); // < 155 bits res = (alpha * ex) / (g8 + ex); // in worst case: (16 + 155 bits) / 155 bits // so res <= alpha } else { x = beta - x; if (x >= 6 * uint256(g)) return 0; // so x < 19 bits uint256 g8 = uint256(g) ** 8; // < 128 bits (8*16) uint256 ex = g8 + exp(x, g, g8); // < 156 bits res = (alpha * g8) / ex; // in worst case: (16 + 128 bits) / 156 bits // g8 <= ex, so res <= alpha } } /// @notice calculates e^(x/g) * g^8 in a series, since (around zero): /// e^x = 1 + x + x^2/2 + ... + x^n/n! + ... /// e^(x/g) = 1 + x/g + x^2/(2*g^2) + ... + x^(n)/(g^n * n!) + ... function exp( uint256 x, uint16 g, uint256 gHighestDegree ) internal pure returns (uint256 res) { // calculating: // g**8 + x * g**7 + (x**2 * g**6) / 2 + (x**3 * g**5) / 6 + (x**4 * g**4) / 24 + (x**5 * g**3) / 120 + (x**6 * g^2) / 720 + x**7 * g / 5040 + x**8 / 40320 // x**8 < 152 bits (19*8) and g**8 < 128 bits (8*16) // so each summand < 152 bits and res < 155 bits uint256 xLowestDegree = x; res = gHighestDegree; // g**8 gHighestDegree /= g; // g**7 res += xLowestDegree * gHighestDegree; gHighestDegree /= g; // g**6 xLowestDegree *= x; // x**2 res += (xLowestDegree * gHighestDegree) / 2; gHighestDegree /= g; // g**5 xLowestDegree *= x; // x**3 res += (xLowestDegree * gHighestDegree) / 6; gHighestDegree /= g; // g**4 xLowestDegree *= x; // x**4 res += (xLowestDegree * gHighestDegree) / 24; gHighestDegree /= g; // g**3 xLowestDegree *= x; // x**5 res += (xLowestDegree * gHighestDegree) / 120; gHighestDegree /= g; // g**2 xLowestDegree *= x; // x**6 res += (xLowestDegree * gHighestDegree) / 720; xLowestDegree *= x; // x**7 res += (xLowestDegree * g) / 5040 + (xLowestDegree * x) / (40320); } }
@cryptoalgebra/core/contracts/libraries/Constants.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.6; library Constants { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; uint256 internal constant Q128 = 0x100000000000000000000000000000000; // fee value in hundredths of a bip, i.e. 1e-6 uint16 internal constant BASE_FEE = 100; int24 internal constant MAX_TICK_SPACING = 500; // max(uint128) / (MAX_TICK - MIN_TICK) uint128 internal constant MAX_LIQUIDITY_PER_TICK = 191757638537527648490752896198553; uint32 internal constant MAX_LIQUIDITY_COOLDOWN = 1 days; uint8 internal constant MAX_COMMUNITY_FEE = 250; uint256 internal constant COMMUNITY_FEE_DENOMINATOR = 1000; }
@cryptoalgebra/core/contracts/libraries/FullMath.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.4.0 || ^0.5.0 || ^0.6.0 || ^0.7.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0 = a * b; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { assembly { result := div(prod0, denominator) } return result; } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod // Subtract 256 bit remainder from 512 bit number assembly { let remainder := mulmod(a, b, denominator) prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = -denominator & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the preconditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { if (a == 0 || ((result = a * b) / a == b)) { require(denominator > 0); assembly { result := add(div(result, denominator), gt(mod(result, denominator), 0)) } } else { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } /// @notice Returns ceil(x / y) /// @dev division by 0 has unspecified behavior, and must be checked externally /// @param x The dividend /// @param y The divisor /// @return z The quotient, ceil(x / y) function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) { assembly { z := add(div(x, y), gt(mod(x, y), 0)) } } }
@cryptoalgebra/core/contracts/libraries/TickMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return price A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick( int24 tick ) internal pure returns (uint160 price) { // get abs value int24 mask = tick >> (24 - 1); uint256 absTick = uint256(uint24((tick ^ mask) - mask)); require(absTick <= uint256(uint24(MAX_TICK)), "T"); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent price = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case price < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param price The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio( uint160 price ) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(price >= MIN_SQRT_RATIO && price < MAX_SQRT_RATIO, "R"); uint256 ratio = uint256(price) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24( (log_sqrt10001 - 3402992956809132418596140100660247210) >> 128 ); int24 tickHi = int24( (log_sqrt10001 + 291339464771989622907027621153398088495) >> 128 ); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= price ? tickHi : tickLow; } }
@cryptoalgebra/periphery/contracts/libraries/LiquidityAmounts.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import "@cryptoalgebra/core/contracts/libraries/FullMath.sol"; import "@cryptoalgebra/core/contracts/libraries/Constants.sol"; /// @title Liquidity amount functions /// @notice Provides functions for computing liquidity amounts from token amounts and prices /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-periphery library LiquidityAmounts { /// @notice Downcasts uint256 to uint128 /// @param x The uint258 to be downcasted /// @return y The passed value, downcasted to uint128 function toUint128(uint256 x) private pure returns (uint128 y) { require((y = uint128(x)) == x); } /// @notice Computes the amount of liquidity received for a given amount of token0 and price range /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount0 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount0( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 intermediate = FullMath.mulDiv( sqrtRatioAX96, sqrtRatioBX96, Constants.Q96 ); return toUint128( FullMath.mulDiv( amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96 ) ); } /// @notice Computes the amount of liquidity received for a given amount of token1 and price range /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)). /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount1 The amount1 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount1( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return toUint128( FullMath.mulDiv( amount1, Constants.Q96, sqrtRatioBX96 - sqrtRatioAX96 ) ); } /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount of token0 being sent in /// @param amount1 The amount of token1 being sent in /// @return liquidity The maximum amount of liquidity received function getLiquidityForAmounts( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { liquidity = getLiquidityForAmount0( sqrtRatioAX96, sqrtRatioBX96, amount0 ); } else if (sqrtRatioX96 < sqrtRatioBX96) { uint128 liquidity0 = getLiquidityForAmount0( sqrtRatioX96, sqrtRatioBX96, amount0 ); uint128 liquidity1 = getLiquidityForAmount1( sqrtRatioAX96, sqrtRatioX96, amount1 ); liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1; } else { liquidity = getLiquidityForAmount1( sqrtRatioAX96, sqrtRatioBX96, amount1 ); } } /// @notice Computes the amount of token0 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 function getAmount0ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return FullMath.mulDiv( uint256(liquidity) << Constants.RESOLUTION, sqrtRatioBX96 - sqrtRatioAX96, sqrtRatioBX96 ) / sqrtRatioAX96; } /// @notice Computes the amount of token1 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount1 The amount of token1 function getAmount1ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return FullMath.mulDiv( liquidity, sqrtRatioBX96 - sqrtRatioAX96, Constants.Q96 ); } /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function getAmountsForLiquidity( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0, uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { amount0 = getAmount0ForLiquidity( sqrtRatioAX96, sqrtRatioBX96, liquidity ); } else if (sqrtRatioX96 < sqrtRatioBX96) { amount0 = getAmount0ForLiquidity( sqrtRatioX96, sqrtRatioBX96, liquidity ); amount1 = getAmount1ForLiquidity( sqrtRatioAX96, sqrtRatioX96, liquidity ); } else { amount1 = getAmount1ForLiquidity( sqrtRatioAX96, sqrtRatioBX96, liquidity ); } } }
@cryptoalgebra/periphery/contracts/libraries/PositionKey.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; library PositionKey { /// @dev Returns the key of the position in the core library function compute( address owner, int24 bottomTick, int24 topTick ) internal pure returns (bytes32 key) { assembly { key := or(shl(24, or(shl(24, owner), and(bottomTick, 0xFFFFFF))), and(topTick, 0xFFFFFF)) } } }
@openzeppelin/contracts-7/math/Math.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } }
@openzeppelin/contracts-7/math/SafeMath.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }
@uniswap/v3-core/contracts/interfaces/pool/IUniswapV3PoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); }
@uniswap/v3-core/contracts/interfaces/pool/IUniswapV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); }
@uniswap/v3-core/contracts/interfaces/pool/IUniswapV3PoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); }
@uniswap/v3-core/contracts/interfaces/pool/IUniswapV3PoolOwnerActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); }
@uniswap/v3-core/contracts/interfaces/pool/IUniswapV3PoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); }
@uniswap/v3-core/contracts/libraries/FixedPoint96.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; }
@uniswap/v3-core/contracts/libraries/FullMath.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.4.0 <0.9.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = denominator & (~denominator + 1); // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } }
@uniswap/v3-core/contracts/libraries/TickMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0 <0.9.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(887272), 'T'); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } }
@uniswap/v3-periphery/contracts/libraries/LiquidityAmounts.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import '@uniswap/v3-core/contracts/libraries/FullMath.sol'; import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol'; /// @title Liquidity amount functions /// @notice Provides functions for computing liquidity amounts from token amounts and prices library LiquidityAmounts { /// @notice Downcasts uint256 to uint128 /// @param x The uint258 to be downcasted /// @return y The passed value, downcasted to uint128 function toUint128(uint256 x) private pure returns (uint128 y) { require((y = uint128(x)) == x); } /// @notice Computes the amount of liquidity received for a given amount of token0 and price range /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount0 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount0( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 intermediate = FullMath.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96); return toUint128(FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96)); } /// @notice Computes the amount of liquidity received for a given amount of token1 and price range /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)). /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount1 The amount1 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount1( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return toUint128(FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96)); } /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount of token0 being sent in /// @param amount1 The amount of token1 being sent in /// @return liquidity The maximum amount of liquidity received function getLiquidityForAmounts( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0); } else if (sqrtRatioX96 < sqrtRatioBX96) { uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0); uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1); liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1; } else { liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1); } } /// @notice Computes the amount of token0 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 function getAmount0ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return FullMath.mulDiv( uint256(liquidity) << FixedPoint96.RESOLUTION, sqrtRatioBX96 - sqrtRatioAX96, sqrtRatioBX96 ) / sqrtRatioAX96; } /// @notice Computes the amount of token1 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount1 The amount of token1 function getAmount1ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function getAmountsForLiquidity( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0, uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity); } else if (sqrtRatioX96 < sqrtRatioBX96) { amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity); amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity); } else { amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity); } } }
@uniswap/v3-periphery/contracts/libraries/PositionKey.sol
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; library PositionKey { /// @dev Returns the key of the position in the core library function compute( address owner, int24 tickLower, int24 tickUpper ) internal pure returns (bytes32) { return keccak256(abi.encodePacked(owner, tickLower, tickUpper)); } }
contracts/interfaces/IFeeManager.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.7.6; pragma abicoder v2; interface IFeeManager { struct Fee { string feeIdentifier; uint256 feeValue; } function setFeeAndWithdrawalPermission( address vault, string[] memory feeIdentifier, uint256[] memory feeValue, address[] memory withdrawer ) external; function setDefaultFeeAndWithdrawalPermission( address vault, uint256 totalVaultFees, string[] memory feeIdentifier, uint256[] memory feeValue, address[] memory withdrawer ) external; function withdrawFee(address vault, string memory feeIdentifier) external; function getFees(address vault) external view returns (Fee[] memory); function vaultTotalFees(address vault) external view returns (uint256); function setMigratedVaultFeeAndWithdrawalPermission() external; function withdrawalPermissions( address vault, string memory feeIdentifier ) external view returns (address); }
contracts/interfaces/IHelper.sol
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.7.6; pragma abicoder v2; interface IHelper { struct NewLiquidityPositions { int24 lowerTick; int24 upperTick; uint16 relativeWeight; } struct LiquidityPositions { int24[] lowerTick; int24[] upperTick; uint16[] relativeWeight; } function getShares( uint256 _totalSupply, uint256 total0, uint256 total1, uint256 amount0Desired, uint256 amount1Desired, uint256 amount0Min, uint256 amount1Min, uint256 minShares ) external pure returns (uint256 shares, uint256 amount0Used, uint256 amount1Used); function uniVolatilityCheck( int24 currentTick, uint32 _twapInterval, int24 _maxTickChange, address pool ) external view; function algebraVolatilityCheck( int24 currentTick, uint32 _twapInterval, int24 _maxTickChange, address pool ) external view; function poolsharkCheckVolatility( int24 currentTick, uint32 _twapInterval, int24 _maxTickChange, address pool ) external view; function getUniswapVaultBalances( uint256 bal0, uint256 bal1, NewLiquidityPositions[] memory positions, address pool, address feeManager ) external view returns (uint256 total0, uint256 total1); function getAlgebraVaultBalances( uint256 total0, uint256 total1, IHelper.NewLiquidityPositions[] memory positions, address pool, address feeManager, uint160 sqrtPriceX96 ) external view returns (uint256, uint256); }
contracts/interfaces/IPoolSharkOracle.sol
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.7.6; pragma abicoder v2; interface IPoolSharkOracle { function sample( uint32[] memory secondsAgo ) external view returns ( int56[] memory tickSecondsAccum, uint160[] memory secondsPerLiquidityAccum, uint160 averagePrice, uint128 averageLiquidity, int24 averageTick ); }
Compiler Settings
{"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":10,"enabled":true},"metadata":{"useLiteralContent":true,"bytecodeHash":"ipfs"},"libraries":{},"evmVersion":"istanbul"}
Contract ABI
[{"type":"function","stateMutability":"view","outputs":[],"name":"algebraVolatilityCheck","inputs":[{"type":"int24","name":"currentTick","internalType":"int24"},{"type":"uint32","name":"_twapInterval","internalType":"uint32"},{"type":"int24","name":"_maxTickChange","internalType":"int24"},{"type":"address","name":"pool","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"},{"type":"uint256","name":"","internalType":"uint256"}],"name":"getAlgebraVaultBalances","inputs":[{"type":"uint256","name":"total0","internalType":"uint256"},{"type":"uint256","name":"total1","internalType":"uint256"},{"type":"tuple[]","name":"positions","internalType":"struct IHelper.NewLiquidityPositions[]","components":[{"type":"int24","name":"lowerTick","internalType":"int24"},{"type":"int24","name":"upperTick","internalType":"int24"},{"type":"uint16","name":"relativeWeight","internalType":"uint16"}]},{"type":"address","name":"pool","internalType":"address"},{"type":"address","name":"feeManager","internalType":"address"},{"type":"uint160","name":"sqrtPriceX96","internalType":"uint160"}]},{"type":"function","stateMutability":"pure","outputs":[{"type":"uint256","name":"shares","internalType":"uint256"},{"type":"uint256","name":"amount0Used","internalType":"uint256"},{"type":"uint256","name":"amount1Used","internalType":"uint256"}],"name":"getShares","inputs":[{"type":"uint256","name":"_totalSupply","internalType":"uint256"},{"type":"uint256","name":"total0","internalType":"uint256"},{"type":"uint256","name":"total1","internalType":"uint256"},{"type":"uint256","name":"amount0Desired","internalType":"uint256"},{"type":"uint256","name":"amount1Desired","internalType":"uint256"},{"type":"uint256","name":"amount0Min","internalType":"uint256"},{"type":"uint256","name":"amount1Min","internalType":"uint256"},{"type":"uint256","name":"minShares","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"},{"type":"uint256","name":"","internalType":"uint256"}],"name":"getUniswapVaultBalances","inputs":[{"type":"uint256","name":"total0","internalType":"uint256"},{"type":"uint256","name":"total1","internalType":"uint256"},{"type":"tuple[]","name":"positions","internalType":"struct IHelper.NewLiquidityPositions[]","components":[{"type":"int24","name":"lowerTick","internalType":"int24"},{"type":"int24","name":"upperTick","internalType":"int24"},{"type":"uint16","name":"relativeWeight","internalType":"uint16"}]},{"type":"address","name":"pool","internalType":"address"},{"type":"address","name":"feeManager","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[],"name":"poolsharkCheckVolatility","inputs":[{"type":"int24","name":"currentTick","internalType":"int24"},{"type":"uint32","name":"_twapInterval","internalType":"uint32"},{"type":"int24","name":"_maxTickChange","internalType":"int24"},{"type":"address","name":"pool","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[],"name":"uniVolatilityCheck","inputs":[{"type":"int24","name":"currentTick","internalType":"int24"},{"type":"uint32","name":"_twapInterval","internalType":"uint32"},{"type":"int24","name":"_maxTickChange","internalType":"int24"},{"type":"address","name":"pool","internalType":"address"}]}]
Contract Creation Code
0x608060405234801561001057600080fd5b5061205a806100206000396000f3fe608060405234801561001057600080fd5b50600436106100625760003560e01c80631d8e9e90146100675780634f1a805b146100915780638f96f0e8146100a6578063dc8d5a49146100b9578063e59c2a1b146100cc578063ee0ce7c7146100df575b600080fd5b61007a610075366004611d05565b610101565b604051610088929190611f56565b60405180910390f35b6100a461009f366004611b30565b6103d8565b005b6100a46100b4366004611b30565b610533565b61007a6100c7366004611d6c565b610613565b6100a46100da366004611b30565b610868565b6100f26100ed366004611df2565b61094b565b60405161008893929190611f64565b60008061010c611651565b846001600160a01b0316633850c7bd6040518163ffffffff1660e01b815260040160e06040518083038186803b15801561014557600080fd5b505afa158015610159573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061017d9190611c49565b5050506001600160a01b0393841685525050604051634867e20360e11b8152918616916390cfc40691506101b5903390600401611e46565b60206040518083038186803b1580156101cd57600080fd5b505afa1580156101e1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102059190611ced565b602082018190526127100360408201528551606082015260005b816060015181146103cb57856001600160a01b031663514ea4bf610272338a858151811061024957fe5b6020026020010151600001518b868151811061026157fe5b602002602001015160200151610ada565b6040518263ffffffff1660e01b815260040161028e9190611ea4565b60a06040518083038186803b1580156102a657600080fd5b505afa1580156102ba573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102de9190611b8b565b6001600160801b0390811660c088015290811660a0870152929092166080850152505081518751610355919061032b908a908590811061031a57fe5b602002602001015160000151610b2f565b61034b8a858151811061033a57fe5b602002602001015160200151610b2f565b8560800151610e56565b61010084015260e083015260a082015160408301516103919161038a9161037f9190612710610ef2565b60e085015190610f9d565b8a90610f9d565b98506103c16103ba6103ae8460c001518560400151612710610ef2565b61010085015190610f9d565b8990610f9d565b975060010161021f565b5096979596505050505050565b604080516002808252606082018352600092602083019080368337019050509050838160008151811061040757fe5b63ffffffff90921660209283029190910190910152604051639d3a524160e01b81526000906001600160a01b03841690639d3a52419061044b908590600401611e5a565b60006040518083038186803b15801561046357600080fd5b505afa158015610477573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261049f9190810190611988565b505050905060008563ffffffff16826000815181106104ba57fe5b6020026020010151836001815181106104cf57fe5b60200260200101510360060b816104e257fe5b05905084810160020b8760020b13158015610505575084810360020b8760020b12155b61052a5760405162461bcd60e51b815260040161052190611f3b565b60405180910390fd5b50505050505050565b604080516002808252606082018352600092602083019080368337019050509050838160008151811061056257fe5b63ffffffff9092166020928302919091019091015260405163883bdbfd60e01b81526000906001600160a01b0384169063883bdbfd906105a6908590600401611e5a565b60006040518083038186803b1580156105be57600080fd5b505afa1580156105d2573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526105fa9190810190611928565b50905060008563ffffffff16826000815181106104ba57fe5b60008061061e6116af565b604051634867e20360e11b81526001600160a01b038616906390cfc4069061064a903390600401611e46565b60206040518083038186803b15801561066257600080fd5b505afa158015610676573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061069a9190611ced565b8082526127100360208201528651604082015260005b8160400151811461085a57866001600160a01b031663514ea4bf610703338b85815181106106da57fe5b6020026020010151600001518c86815181106106f257fe5b602002602001015160200151610ffe565b6040518263ffffffff1660e01b815260040161071f9190611ea4565b60c06040518083038186803b15801561073757600080fd5b505afa15801561074b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061076f9190611be1565b6001600160801b0390811660a08901529081166080880152939093166060860152505088516107e6915086906107bc908b90859081106107ab57fe5b602002602001015160000151611014565b6107dc8b85815181106107cb57fe5b602002602001015160200151611014565b8560600151611330565b60e084015260c08301526080820151602083015161082a9161082391610818916001600160801b0316906127106113b2565b60c085015190610f9d565b8b90610f9d565b995061085061038a61037f8460a001516001600160801b031685602001516127106113b2565b98506001016106b0565b509798969750505050505050565b604080516002808252606082018352600092602083019080368337019050509050838160008151811061089757fe5b63ffffffff90921660209283029190910190910152604051633d8859ff60e21b81526000906001600160a01b0384169063f62167fc906108db908590600401611e5a565b60006040518083038186803b1580156108f357600080fd5b505afa158015610907573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261092f9190810190611a98565b50505050905060008563ffffffff16826000815181106104ba57fe5b600080808a158061095c575060008a115b806109675750600089115b61096d57fe5b8a6109a85750869050856109818282611448565b9250838310156109a35760405162461bcd60e51b815260040161052190611f05565b610a6c565b896109cc576109b8878c8b610ef2565b92506109c5838a8d61145f565b9050610a6c565b886109f0576109dc888c8c610ef2565b92506109e9838b8d61145f565b9150610a6c565b6000610a0e6109ff8a8c611499565b610a098a8e611499565b6114f2565b905060008111610a305760405162461bcd60e51b815260040161052190611ead565b896001820381610a3c57fe5b0460010192508a6001820381610a4e57fe5b04600101915089610a60828e8e610ef2565b81610a6757fe5b049350505b60008311610a8c5760405162461bcd60e51b815260040161052190611ee3565b85821015610aac5760405162461bcd60e51b815260040161052190611ec8565b84811015610acc5760405162461bcd60e51b815260040161052190611f20565b985098509895505050505050565b604080516001600160601b0319606086901b16602080830191909152600285810b60e890811b60348501529085900b901b60378301528251601a818403018152603a90920190925280519101205b9392505050565b60008060008360020b12610b46578260020b610b4e565b8260020b6000035b9050620d89e8811115610b8c576040805162461bcd60e51b81526020600482015260016024820152601560fa1b604482015290519081900360640190fd5b600060018216610ba057600160801b610bb2565b6ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b031690506002821615610bdc576ffff97272373d413259a46990580e213a0260801c5b6004821615610bfb576ffff2e50f5f656932ef12357cf3c7fdcc0260801c5b6008821615610c1a576fffe5caca7e10e4e61c3624eaa0941cd00260801c5b6010821615610c39576fffcb9843d60f6159c9db58835c9266440260801c5b6020821615610c58576fff973b41fa98c081472e6896dfb254c00260801c5b6040821615610c77576fff2ea16466c96a3843ec78b326b528610260801c5b6080821615610c96576ffe5dee046a99a2a811c461f1969c30530260801c5b610100821615610cb6576ffcbe86c7900a88aedcffc83b479aa3a40260801c5b610200821615610cd6576ff987a7253ac413176f2b074cf7815e540260801c5b610400821615610cf6576ff3392b0822b70005940c7a398e4b70f30260801c5b610800821615610d16576fe7159475a2c29b7443b29c7fa6e889d90260801c5b611000821615610d36576fd097f3bdfd2022b8845ad8f792aa58250260801c5b612000821615610d56576fa9f746462d870fdf8a65dc1f90e061e50260801c5b614000821615610d76576f70d869a156d2a1b890bb3df62baf32f70260801c5b618000821615610d96576f31be135f97d08fd981231505542fcfa60260801c5b62010000821615610db7576f09aa508b5b7a84e1c677de54f3e99bc90260801c5b62020000821615610dd7576e5d6af8dedb81196699c329225ee6040260801c5b62040000821615610df6576d2216e584f5fa1ea926041bedfe980260801c5b62080000821615610e13576b048a170391f7dc42444e8fa20260801c5b60008460020b1315610e2e578060001981610e2a57fe5b0490505b600160201b810615610e41576001610e44565b60005b60ff16602082901c0192505050919050565b600080836001600160a01b0316856001600160a01b03161115610e77579293925b846001600160a01b0316866001600160a01b031611610ea257610e9b858585611501565b9150610ee9565b836001600160a01b0316866001600160a01b03161015610edb57610ec7868585611501565b9150610ed485878561156a565b9050610ee9565b610ee685858561156a565b90505b94509492505050565b6000808060001985870986860292508281109083900303905080610f285760008411610f1d57600080fd5b508290049050610b28565b808411610f3457600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b600082820183811015610ff5576040805162461bcd60e51b815260206004820152601b60248201527a536166654d6174683a206164646974696f6e206f766572666c6f7760281b604482015290519081900360640190fd5b90505b92915050565b601892831b62ffffff9283161790921b91161790565b6000600282900b60171d62ffffff81841882900316620d89e8811115611065576040805162461bcd60e51b81526020600482015260016024820152601560fa1b604482015290519081900360640190fd5b60006001821661107957600160801b61108b565b6ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b0316905060028216156110b5576ffff97272373d413259a46990580e213a0260801c5b60048216156110d4576ffff2e50f5f656932ef12357cf3c7fdcc0260801c5b60088216156110f3576fffe5caca7e10e4e61c3624eaa0941cd00260801c5b6010821615611112576fffcb9843d60f6159c9db58835c9266440260801c5b6020821615611131576fff973b41fa98c081472e6896dfb254c00260801c5b6040821615611150576fff2ea16466c96a3843ec78b326b528610260801c5b608082161561116f576ffe5dee046a99a2a811c461f1969c30530260801c5b61010082161561118f576ffcbe86c7900a88aedcffc83b479aa3a40260801c5b6102008216156111af576ff987a7253ac413176f2b074cf7815e540260801c5b6104008216156111cf576ff3392b0822b70005940c7a398e4b70f30260801c5b6108008216156111ef576fe7159475a2c29b7443b29c7fa6e889d90260801c5b61100082161561120f576fd097f3bdfd2022b8845ad8f792aa58250260801c5b61200082161561122f576fa9f746462d870fdf8a65dc1f90e061e50260801c5b61400082161561124f576f70d869a156d2a1b890bb3df62baf32f70260801c5b61800082161561126f576f31be135f97d08fd981231505542fcfa60260801c5b62010000821615611290576f09aa508b5b7a84e1c677de54f3e99bc90260801c5b620200008216156112b0576e5d6af8dedb81196699c329225ee6040260801c5b620400008216156112cf576d2216e584f5fa1ea926041bedfe980260801c5b620800008216156112ec576b048a170391f7dc42444e8fa20260801c5b60008560020b131561130757806000198161130357fe5b0490505b600160201b81061561131a57600161131d565b60005b60ff16602082901c019350505050919050565b600080836001600160a01b0316856001600160a01b03161115611351579293925b846001600160a01b0316866001600160a01b03161161137557610e9b8585856115b5565b836001600160a01b0316866001600160a01b031610156113a75761139a8685856115b5565b9150610ed485878561160e565b610ee685858561160e565b600083830281600019858709828110838203039150508084116113d457600080fd5b806113e457508290049050610b28565b8385870960008581038616958690049560026003880281188089028203028089028203028089028203028089028203028089028203028089029091030291819003819004600101858411909403939093029190930391909104170290509392505050565b6000818310156114585781610ff5565b5090919050565b600061146c848484610ef2565b90506000828061147857fe5b8486091115610b2857600019811061148f57600080fd5b6001019392505050565b6000826114a857506000610ff8565b828202828482816114b557fe5b0414610ff55760405162461bcd60e51b81526004018080602001828103825260218152602001806120046021913960400191505060405180910390fd5b60008183106114585781610ff5565b6000826001600160a01b0316846001600160a01b03161115611521579192915b836001600160a01b031661155a606060ff16846001600160801b0316901b8686036001600160a01b0316866001600160a01b0316610ef2565b8161156157fe5b04949350505050565b6000826001600160a01b0316846001600160a01b0316111561158a579192915b6115ad826001600160801b03168585036001600160a01b0316600160601b610ef2565b949350505050565b6000826001600160a01b0316846001600160a01b031611156115d5579192915b836001600160a01b031661155a606060ff16846001600160801b0316901b8686036001600160a01b0316866001600160a01b03166113b2565b6000826001600160a01b0316846001600160a01b0316111561162e579192915b6115ad826001600160801b03168585036001600160a01b0316600160601b6113b2565b60405180610120016040528060006001600160a01b0316815260200160008152602001600081526020016000815260200160006001600160801b03168152602001600081526020016000815260200160008152602001600081525090565b60405180610100016040528060008152602001600081526020016000815260200160006001600160801b0316815260200160006001600160801b0316815260200160006001600160801b0316815260200160008152602001600081525090565b600082601f83011261171f578081fd5b8151602061173461172f83611f9d565b611f7a565b8281528181019085830183850287018401881015611750578586fd5b855b8581101561177c5781518060060b811461176a578788fd5b84529284019290840190600101611752565b5090979650505050505050565b600082601f830112611799578081fd5b813560206117a961172f83611f9d565b828152818101908583016060808602880185018910156117c7578687fd5b865b868110156118415781838b0312156117df578788fd5b604080518381016001600160401b03811182821017156117fb57fe5b8252843561180881611fd2565b81528488013561181781611fd2565b818901528482013561182881611fe1565b91810191909152855293850193918101916001016117c9565b509198975050505050505050565b600082601f83011261185f578081fd5b8151602061186f61172f83611f9d565b828152818101908583018385028701840188101561188b578586fd5b855b8581101561177c5781516118a081611fba565b8452928401929084019060010161188d565b600082601f8301126118c2578081fd5b815160206118d261172f83611f9d565b82815281810190858301838502870184018810156118ee578586fd5b855b8581101561177c578151845292840192908401906001016118f0565b80516001600160801b038116811461192357600080fd5b919050565b6000806040838503121561193a578182fd5b82516001600160401b0380821115611950578384fd5b61195c8683870161170f565b93506020850151915080821115611971578283fd5b5061197e8582860161184f565b9150509250929050565b6000806000806080858703121561199d578182fd5b84516001600160401b03808211156119b3578384fd5b6119bf8883890161170f565b95506020915081870151818111156119d5578485fd5b6119e189828a0161184f565b9550506040870151818111156119f5578485fd5b8701601f81018913611a05578485fd5b8051611a1361172f82611f9d565b81815284810190838601868402850187018d1015611a2f578889fd5b8894505b83851015611a655780516001600160701b0381168114611a5157898afd5b835260019490940193918601918601611a33565b5060608b0151909750945050505080821115611a7f578283fd5b50611a8c878288016118b2565b91505092959194509250565b600080600080600060a08688031215611aaf578283fd5b85516001600160401b0380821115611ac5578485fd5b611ad189838a0161170f565b96506020880151915080821115611ae6578485fd5b50611af38882890161184f565b9450506040860151611b0481611fba565b9250611b126060870161190c565b91506080860151611b2281611fd2565b809150509295509295909350565b60008060008060808587031215611b45578182fd5b8435611b5081611fd2565b93506020850135611b6081611ff1565b92506040850135611b7081611fd2565b91506060850135611b8081611fba565b939692955090935050565b600080600080600060a08688031215611ba2578283fd5b611bab8661190c565b94506020860151935060408601519250611bc76060870161190c565b9150611bd56080870161190c565b90509295509295909350565b60008060008060008060c08789031215611bf9578384fd5b611c028761190c565b95506020870151611c1281611ff1565b6040880151606089015191965094509250611c2f6080880161190c565b9150611c3d60a0880161190c565b90509295509295509295565b600080600080600080600060e0888a031215611c63578485fd5b8751611c6e81611fba565b6020890151909750611c7f81611fd2565b6040890151909650611c9081611fe1565b6060890151909550611ca181611fe1565b6080890151909450611cb281611fe1565b60a089015190935060ff81168114611cc8578182fd5b60c08901519092508015158114611cdd578182fd5b8091505092959891949750929550565b600060208284031215611cfe578081fd5b5051919050565b600080600080600060a08688031215611d1c578283fd5b853594506020860135935060408601356001600160401b03811115611d3f578384fd5b611d4b88828901611789565b9350506060860135611d5c81611fba565b91506080860135611b2281611fba565b60008060008060008060c08789031215611d84578384fd5b863595506020870135945060408701356001600160401b03811115611da7578485fd5b611db389828a01611789565b9450506060870135611dc481611fba565b92506080870135611dd481611fba565b915060a0870135611de481611fba565b809150509295509295509295565b600080600080600080600080610100898b031215611e0e578182fd5b505086359860208801359850604088013597606081013597506080810135965060a0810135955060c0810135945060e0013592509050565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015611e9857835163ffffffff1683529284019291840191600101611e76565b50909695505050505050565b90815260200190565b6020808252600190820152604360f81b604082015260600190565b6020808252600190820152600360fc1b604082015260600190565b602080825260089082015267302073686172657360c01b604082015260600190565b6020808252600190820152604d60f81b604082015260600190565b6020808252600190820152603160f81b604082015260600190565b6020808252600190820152602b60f91b604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b6040518181016001600160401b0381118282101715611f9557fe5b604052919050565b60006001600160401b03821115611fb057fe5b5060209081020190565b6001600160a01b0381168114611fcf57600080fd5b50565b8060020b8114611fcf57600080fd5b61ffff81168114611fcf57600080fd5b63ffffffff81168114611fcf57600080fdfe536166654d6174683a206d756c7469706c69636174696f6e206f766572666c6f77a26469706673582212204732cb58fb509db86f510db633652da128c92c5285e9755c145ca5218043880864736f6c63430007060033
Deployed ByteCode
0x608060405234801561001057600080fd5b50600436106100625760003560e01c80631d8e9e90146100675780634f1a805b146100915780638f96f0e8146100a6578063dc8d5a49146100b9578063e59c2a1b146100cc578063ee0ce7c7146100df575b600080fd5b61007a610075366004611d05565b610101565b604051610088929190611f56565b60405180910390f35b6100a461009f366004611b30565b6103d8565b005b6100a46100b4366004611b30565b610533565b61007a6100c7366004611d6c565b610613565b6100a46100da366004611b30565b610868565b6100f26100ed366004611df2565b61094b565b60405161008893929190611f64565b60008061010c611651565b846001600160a01b0316633850c7bd6040518163ffffffff1660e01b815260040160e06040518083038186803b15801561014557600080fd5b505afa158015610159573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061017d9190611c49565b5050506001600160a01b0393841685525050604051634867e20360e11b8152918616916390cfc40691506101b5903390600401611e46565b60206040518083038186803b1580156101cd57600080fd5b505afa1580156101e1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102059190611ced565b602082018190526127100360408201528551606082015260005b816060015181146103cb57856001600160a01b031663514ea4bf610272338a858151811061024957fe5b6020026020010151600001518b868151811061026157fe5b602002602001015160200151610ada565b6040518263ffffffff1660e01b815260040161028e9190611ea4565b60a06040518083038186803b1580156102a657600080fd5b505afa1580156102ba573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102de9190611b8b565b6001600160801b0390811660c088015290811660a0870152929092166080850152505081518751610355919061032b908a908590811061031a57fe5b602002602001015160000151610b2f565b61034b8a858151811061033a57fe5b602002602001015160200151610b2f565b8560800151610e56565b61010084015260e083015260a082015160408301516103919161038a9161037f9190612710610ef2565b60e085015190610f9d565b8a90610f9d565b98506103c16103ba6103ae8460c001518560400151612710610ef2565b61010085015190610f9d565b8990610f9d565b975060010161021f565b5096979596505050505050565b604080516002808252606082018352600092602083019080368337019050509050838160008151811061040757fe5b63ffffffff90921660209283029190910190910152604051639d3a524160e01b81526000906001600160a01b03841690639d3a52419061044b908590600401611e5a565b60006040518083038186803b15801561046357600080fd5b505afa158015610477573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261049f9190810190611988565b505050905060008563ffffffff16826000815181106104ba57fe5b6020026020010151836001815181106104cf57fe5b60200260200101510360060b816104e257fe5b05905084810160020b8760020b13158015610505575084810360020b8760020b12155b61052a5760405162461bcd60e51b815260040161052190611f3b565b60405180910390fd5b50505050505050565b604080516002808252606082018352600092602083019080368337019050509050838160008151811061056257fe5b63ffffffff9092166020928302919091019091015260405163883bdbfd60e01b81526000906001600160a01b0384169063883bdbfd906105a6908590600401611e5a565b60006040518083038186803b1580156105be57600080fd5b505afa1580156105d2573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526105fa9190810190611928565b50905060008563ffffffff16826000815181106104ba57fe5b60008061061e6116af565b604051634867e20360e11b81526001600160a01b038616906390cfc4069061064a903390600401611e46565b60206040518083038186803b15801561066257600080fd5b505afa158015610676573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061069a9190611ced565b8082526127100360208201528651604082015260005b8160400151811461085a57866001600160a01b031663514ea4bf610703338b85815181106106da57fe5b6020026020010151600001518c86815181106106f257fe5b602002602001015160200151610ffe565b6040518263ffffffff1660e01b815260040161071f9190611ea4565b60c06040518083038186803b15801561073757600080fd5b505afa15801561074b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061076f9190611be1565b6001600160801b0390811660a08901529081166080880152939093166060860152505088516107e6915086906107bc908b90859081106107ab57fe5b602002602001015160000151611014565b6107dc8b85815181106107cb57fe5b602002602001015160200151611014565b8560600151611330565b60e084015260c08301526080820151602083015161082a9161082391610818916001600160801b0316906127106113b2565b60c085015190610f9d565b8b90610f9d565b995061085061038a61037f8460a001516001600160801b031685602001516127106113b2565b98506001016106b0565b509798969750505050505050565b604080516002808252606082018352600092602083019080368337019050509050838160008151811061089757fe5b63ffffffff90921660209283029190910190910152604051633d8859ff60e21b81526000906001600160a01b0384169063f62167fc906108db908590600401611e5a565b60006040518083038186803b1580156108f357600080fd5b505afa158015610907573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261092f9190810190611a98565b50505050905060008563ffffffff16826000815181106104ba57fe5b600080808a158061095c575060008a115b806109675750600089115b61096d57fe5b8a6109a85750869050856109818282611448565b9250838310156109a35760405162461bcd60e51b815260040161052190611f05565b610a6c565b896109cc576109b8878c8b610ef2565b92506109c5838a8d61145f565b9050610a6c565b886109f0576109dc888c8c610ef2565b92506109e9838b8d61145f565b9150610a6c565b6000610a0e6109ff8a8c611499565b610a098a8e611499565b6114f2565b905060008111610a305760405162461bcd60e51b815260040161052190611ead565b896001820381610a3c57fe5b0460010192508a6001820381610a4e57fe5b04600101915089610a60828e8e610ef2565b81610a6757fe5b049350505b60008311610a8c5760405162461bcd60e51b815260040161052190611ee3565b85821015610aac5760405162461bcd60e51b815260040161052190611ec8565b84811015610acc5760405162461bcd60e51b815260040161052190611f20565b985098509895505050505050565b604080516001600160601b0319606086901b16602080830191909152600285810b60e890811b60348501529085900b901b60378301528251601a818403018152603a90920190925280519101205b9392505050565b60008060008360020b12610b46578260020b610b4e565b8260020b6000035b9050620d89e8811115610b8c576040805162461bcd60e51b81526020600482015260016024820152601560fa1b604482015290519081900360640190fd5b600060018216610ba057600160801b610bb2565b6ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b031690506002821615610bdc576ffff97272373d413259a46990580e213a0260801c5b6004821615610bfb576ffff2e50f5f656932ef12357cf3c7fdcc0260801c5b6008821615610c1a576fffe5caca7e10e4e61c3624eaa0941cd00260801c5b6010821615610c39576fffcb9843d60f6159c9db58835c9266440260801c5b6020821615610c58576fff973b41fa98c081472e6896dfb254c00260801c5b6040821615610c77576fff2ea16466c96a3843ec78b326b528610260801c5b6080821615610c96576ffe5dee046a99a2a811c461f1969c30530260801c5b610100821615610cb6576ffcbe86c7900a88aedcffc83b479aa3a40260801c5b610200821615610cd6576ff987a7253ac413176f2b074cf7815e540260801c5b610400821615610cf6576ff3392b0822b70005940c7a398e4b70f30260801c5b610800821615610d16576fe7159475a2c29b7443b29c7fa6e889d90260801c5b611000821615610d36576fd097f3bdfd2022b8845ad8f792aa58250260801c5b612000821615610d56576fa9f746462d870fdf8a65dc1f90e061e50260801c5b614000821615610d76576f70d869a156d2a1b890bb3df62baf32f70260801c5b618000821615610d96576f31be135f97d08fd981231505542fcfa60260801c5b62010000821615610db7576f09aa508b5b7a84e1c677de54f3e99bc90260801c5b62020000821615610dd7576e5d6af8dedb81196699c329225ee6040260801c5b62040000821615610df6576d2216e584f5fa1ea926041bedfe980260801c5b62080000821615610e13576b048a170391f7dc42444e8fa20260801c5b60008460020b1315610e2e578060001981610e2a57fe5b0490505b600160201b810615610e41576001610e44565b60005b60ff16602082901c0192505050919050565b600080836001600160a01b0316856001600160a01b03161115610e77579293925b846001600160a01b0316866001600160a01b031611610ea257610e9b858585611501565b9150610ee9565b836001600160a01b0316866001600160a01b03161015610edb57610ec7868585611501565b9150610ed485878561156a565b9050610ee9565b610ee685858561156a565b90505b94509492505050565b6000808060001985870986860292508281109083900303905080610f285760008411610f1d57600080fd5b508290049050610b28565b808411610f3457600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b600082820183811015610ff5576040805162461bcd60e51b815260206004820152601b60248201527a536166654d6174683a206164646974696f6e206f766572666c6f7760281b604482015290519081900360640190fd5b90505b92915050565b601892831b62ffffff9283161790921b91161790565b6000600282900b60171d62ffffff81841882900316620d89e8811115611065576040805162461bcd60e51b81526020600482015260016024820152601560fa1b604482015290519081900360640190fd5b60006001821661107957600160801b61108b565b6ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b0316905060028216156110b5576ffff97272373d413259a46990580e213a0260801c5b60048216156110d4576ffff2e50f5f656932ef12357cf3c7fdcc0260801c5b60088216156110f3576fffe5caca7e10e4e61c3624eaa0941cd00260801c5b6010821615611112576fffcb9843d60f6159c9db58835c9266440260801c5b6020821615611131576fff973b41fa98c081472e6896dfb254c00260801c5b6040821615611150576fff2ea16466c96a3843ec78b326b528610260801c5b608082161561116f576ffe5dee046a99a2a811c461f1969c30530260801c5b61010082161561118f576ffcbe86c7900a88aedcffc83b479aa3a40260801c5b6102008216156111af576ff987a7253ac413176f2b074cf7815e540260801c5b6104008216156111cf576ff3392b0822b70005940c7a398e4b70f30260801c5b6108008216156111ef576fe7159475a2c29b7443b29c7fa6e889d90260801c5b61100082161561120f576fd097f3bdfd2022b8845ad8f792aa58250260801c5b61200082161561122f576fa9f746462d870fdf8a65dc1f90e061e50260801c5b61400082161561124f576f70d869a156d2a1b890bb3df62baf32f70260801c5b61800082161561126f576f31be135f97d08fd981231505542fcfa60260801c5b62010000821615611290576f09aa508b5b7a84e1c677de54f3e99bc90260801c5b620200008216156112b0576e5d6af8dedb81196699c329225ee6040260801c5b620400008216156112cf576d2216e584f5fa1ea926041bedfe980260801c5b620800008216156112ec576b048a170391f7dc42444e8fa20260801c5b60008560020b131561130757806000198161130357fe5b0490505b600160201b81061561131a57600161131d565b60005b60ff16602082901c019350505050919050565b600080836001600160a01b0316856001600160a01b03161115611351579293925b846001600160a01b0316866001600160a01b03161161137557610e9b8585856115b5565b836001600160a01b0316866001600160a01b031610156113a75761139a8685856115b5565b9150610ed485878561160e565b610ee685858561160e565b600083830281600019858709828110838203039150508084116113d457600080fd5b806113e457508290049050610b28565b8385870960008581038616958690049560026003880281188089028203028089028203028089028203028089028203028089028203028089029091030291819003819004600101858411909403939093029190930391909104170290509392505050565b6000818310156114585781610ff5565b5090919050565b600061146c848484610ef2565b90506000828061147857fe5b8486091115610b2857600019811061148f57600080fd5b6001019392505050565b6000826114a857506000610ff8565b828202828482816114b557fe5b0414610ff55760405162461bcd60e51b81526004018080602001828103825260218152602001806120046021913960400191505060405180910390fd5b60008183106114585781610ff5565b6000826001600160a01b0316846001600160a01b03161115611521579192915b836001600160a01b031661155a606060ff16846001600160801b0316901b8686036001600160a01b0316866001600160a01b0316610ef2565b8161156157fe5b04949350505050565b6000826001600160a01b0316846001600160a01b0316111561158a579192915b6115ad826001600160801b03168585036001600160a01b0316600160601b610ef2565b949350505050565b6000826001600160a01b0316846001600160a01b031611156115d5579192915b836001600160a01b031661155a606060ff16846001600160801b0316901b8686036001600160a01b0316866001600160a01b03166113b2565b6000826001600160a01b0316846001600160a01b0316111561162e579192915b6115ad826001600160801b03168585036001600160a01b0316600160601b6113b2565b60405180610120016040528060006001600160a01b0316815260200160008152602001600081526020016000815260200160006001600160801b03168152602001600081526020016000815260200160008152602001600081525090565b60405180610100016040528060008152602001600081526020016000815260200160006001600160801b0316815260200160006001600160801b0316815260200160006001600160801b0316815260200160008152602001600081525090565b600082601f83011261171f578081fd5b8151602061173461172f83611f9d565b611f7a565b8281528181019085830183850287018401881015611750578586fd5b855b8581101561177c5781518060060b811461176a578788fd5b84529284019290840190600101611752565b5090979650505050505050565b600082601f830112611799578081fd5b813560206117a961172f83611f9d565b828152818101908583016060808602880185018910156117c7578687fd5b865b868110156118415781838b0312156117df578788fd5b604080518381016001600160401b03811182821017156117fb57fe5b8252843561180881611fd2565b81528488013561181781611fd2565b818901528482013561182881611fe1565b91810191909152855293850193918101916001016117c9565b509198975050505050505050565b600082601f83011261185f578081fd5b8151602061186f61172f83611f9d565b828152818101908583018385028701840188101561188b578586fd5b855b8581101561177c5781516118a081611fba565b8452928401929084019060010161188d565b600082601f8301126118c2578081fd5b815160206118d261172f83611f9d565b82815281810190858301838502870184018810156118ee578586fd5b855b8581101561177c578151845292840192908401906001016118f0565b80516001600160801b038116811461192357600080fd5b919050565b6000806040838503121561193a578182fd5b82516001600160401b0380821115611950578384fd5b61195c8683870161170f565b93506020850151915080821115611971578283fd5b5061197e8582860161184f565b9150509250929050565b6000806000806080858703121561199d578182fd5b84516001600160401b03808211156119b3578384fd5b6119bf8883890161170f565b95506020915081870151818111156119d5578485fd5b6119e189828a0161184f565b9550506040870151818111156119f5578485fd5b8701601f81018913611a05578485fd5b8051611a1361172f82611f9d565b81815284810190838601868402850187018d1015611a2f578889fd5b8894505b83851015611a655780516001600160701b0381168114611a5157898afd5b835260019490940193918601918601611a33565b5060608b0151909750945050505080821115611a7f578283fd5b50611a8c878288016118b2565b91505092959194509250565b600080600080600060a08688031215611aaf578283fd5b85516001600160401b0380821115611ac5578485fd5b611ad189838a0161170f565b96506020880151915080821115611ae6578485fd5b50611af38882890161184f565b9450506040860151611b0481611fba565b9250611b126060870161190c565b91506080860151611b2281611fd2565b809150509295509295909350565b60008060008060808587031215611b45578182fd5b8435611b5081611fd2565b93506020850135611b6081611ff1565b92506040850135611b7081611fd2565b91506060850135611b8081611fba565b939692955090935050565b600080600080600060a08688031215611ba2578283fd5b611bab8661190c565b94506020860151935060408601519250611bc76060870161190c565b9150611bd56080870161190c565b90509295509295909350565b60008060008060008060c08789031215611bf9578384fd5b611c028761190c565b95506020870151611c1281611ff1565b6040880151606089015191965094509250611c2f6080880161190c565b9150611c3d60a0880161190c565b90509295509295509295565b600080600080600080600060e0888a031215611c63578485fd5b8751611c6e81611fba565b6020890151909750611c7f81611fd2565b6040890151909650611c9081611fe1565b6060890151909550611ca181611fe1565b6080890151909450611cb281611fe1565b60a089015190935060ff81168114611cc8578182fd5b60c08901519092508015158114611cdd578182fd5b8091505092959891949750929550565b600060208284031215611cfe578081fd5b5051919050565b600080600080600060a08688031215611d1c578283fd5b853594506020860135935060408601356001600160401b03811115611d3f578384fd5b611d4b88828901611789565b9350506060860135611d5c81611fba565b91506080860135611b2281611fba565b60008060008060008060c08789031215611d84578384fd5b863595506020870135945060408701356001600160401b03811115611da7578485fd5b611db389828a01611789565b9450506060870135611dc481611fba565b92506080870135611dd481611fba565b915060a0870135611de481611fba565b809150509295509295509295565b600080600080600080600080610100898b031215611e0e578182fd5b505086359860208801359850604088013597606081013597506080810135965060a0810135955060c0810135945060e0013592509050565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015611e9857835163ffffffff1683529284019291840191600101611e76565b50909695505050505050565b90815260200190565b6020808252600190820152604360f81b604082015260600190565b6020808252600190820152600360fc1b604082015260600190565b602080825260089082015267302073686172657360c01b604082015260600190565b6020808252600190820152604d60f81b604082015260600190565b6020808252600190820152603160f81b604082015260600190565b6020808252600190820152602b60f91b604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b6040518181016001600160401b0381118282101715611f9557fe5b604052919050565b60006001600160401b03821115611fb057fe5b5060209081020190565b6001600160a01b0381168114611fcf57600080fd5b50565b8060020b8114611fcf57600080fd5b61ffff81168114611fcf57600080fd5b63ffffffff81168114611fcf57600080fdfe536166654d6174683a206d756c7469706c69636174696f6e206f766572666c6f77a26469706673582212204732cb58fb509db86f510db633652da128c92c5285e9755c145ca5218043880864736f6c63430007060033