Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- TaikoMerkleDistributor
- Optimization enabled
- false
- Compiler version
- v0.8.26+commit.8a97fa7a
- EVM Version
- default
- Verified at
- 2024-11-18T09:57:02.004349Z
Constructor Arguments
0x000000000000000000000000a9d23408b9ba935c230493c40c73824df71a0975
Arg [0] (address) : 0xa9d23408b9ba935c230493c40c73824df71a0975
taiko.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
contract TaikoMerkleDistributor is Ownable {
using SafeERC20 for IERC20;
bytes32 public merkleRoot;
IERC20 public taikoToken;
mapping(address => bool) public hasClaimed;
constructor(address _taikoTokenAddress) Ownable(msg.sender) {
taikoToken = IERC20(_taikoTokenAddress);
}
function setRoot(bytes32 root) external onlyOwner {
merkleRoot = root;
emit MerkleRootUpdated(root);
}
function claim(uint256 amount, bytes32[] calldata merkleProof) external {
require(!hasClaimed[msg.sender], "TaikoMerkleDistributor: Already claimed.");
bytes32 leaf = keccak256(abi.encodePacked(msg.sender, amount));
require(
MerkleProof.verify(merkleProof, merkleRoot, leaf),
"TaikoMerkleDistributor: Invalid proof."
);
hasClaimed[msg.sender] = true;
taikoToken.safeTransfer(msg.sender, amount);
emit Claimed(msg.sender, amount);
}
function withdraw(address to) external onlyOwner {
require(to != address(0), "TaikoMerkleDistributor: Invalid address.");
uint256 remainingBalance = taikoToken.balanceOf(address(this));
require(remainingBalance > 0, "TaikoMerkleDistributor: No tokens to withdraw.");
taikoToken.safeTransfer(to, remainingBalance);
emit Withdrawn(to, remainingBalance);
}
event MerkleRootUpdated(bytes32 indexed merkleRoot);
event Claimed(address indexed claimant, uint256 amount);
event Withdrawn(address indexed to, uint256 amount);
}
@openzeppelin/contracts/utils/cryptography/Hashes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/
library Hashes {
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
@openzeppelin/contracts/utils/cryptography/MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function processProof(
bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function processProofCalldata(
bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
}
@openzeppelin/contracts/access/Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
@openzeppelin/contracts/interfaces/IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
@openzeppelin/contracts/interfaces/IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
@openzeppelin/contracts/interfaces/IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
@openzeppelin/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
@openzeppelin/contracts/utils/Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}
@openzeppelin/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
@openzeppelin/contracts/utils/Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}
@openzeppelin/contracts/utils/introspection/IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Compiler Settings
{"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":false},"libraries":{}}
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"_taikoTokenAddress","internalType":"address"}]},{"type":"error","name":"OwnableInvalidOwner","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"OwnableUnauthorizedAccount","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"error","name":"SafeERC20FailedOperation","inputs":[{"type":"address","name":"token","internalType":"address"}]},{"type":"event","name":"Claimed","inputs":[{"type":"address","name":"claimant","internalType":"address","indexed":true},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"MerkleRootUpdated","inputs":[{"type":"bytes32","name":"merkleRoot","internalType":"bytes32","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"Withdrawn","inputs":[{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"claim","inputs":[{"type":"uint256","name":"amount","internalType":"uint256"},{"type":"bytes32[]","name":"merkleProof","internalType":"bytes32[]"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"hasClaimed","inputs":[{"type":"address","name":"","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"merkleRoot","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setRoot","inputs":[{"type":"bytes32","name":"root","internalType":"bytes32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract IERC20"}],"name":"taikoToken","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"withdraw","inputs":[{"type":"address","name":"to","internalType":"address"}]}]
Contract Creation Code
0x608060405234801561000f575f80fd5b5060405161132538038061132583398181016040528101906100319190610217565b335f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036100a2575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016100999190610251565b60405180910390fd5b6100b1816100f860201b60201c565b508060025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505061026a565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6101e6826101bd565b9050919050565b6101f6816101dc565b8114610200575f80fd5b50565b5f81519050610211816101ed565b92915050565b5f6020828403121561022c5761022b6101b9565b5b5f61023984828501610203565b91505092915050565b61024b816101dc565b82525050565b5f6020820190506102645f830184610242565b92915050565b6110ae806102775f395ff3fe608060405234801561000f575f80fd5b5060043610610091575f3560e01c806373b2e80e1161006457806373b2e80e146100f55780638b68c4a9146101255780638da5cb5b14610143578063dab5f34014610161578063f2fde38b1461017d57610091565b80632eb4a7ab146100955780632f52ebb7146100b357806351cff8d9146100cf578063715018a6146100eb575b5f80fd5b61009d610199565b6040516100aa9190610a2a565b60405180910390f35b6100cd60048036038101906100c89190610adf565b61019f565b005b6100e960048036038101906100e49190610b96565b6103d6565b005b6100f36105c8565b005b61010f600480360381019061010a9190610b96565b6105db565b60405161011c9190610bdb565b60405180910390f35b61012d6105f8565b60405161013a9190610c4f565b60405180910390f35b61014b61061d565b6040516101589190610c77565b60405180910390f35b61017b60048036038101906101769190610cba565b610644565b005b61019760048036038101906101929190610b96565b610683565b005b60015481565b60035f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615610229576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161022090610d65565b60405180910390fd5b5f338460405160200161023d929190610de8565b6040516020818303038152906040528051906020012090506102a28383808060200260200160405190810160405280939291908181526020018383602002808284375f81840152601f19601f8201169050808301925050505050505060015483610707565b6102e1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102d890610e83565b60405180910390fd5b600160035f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff021916908315150217905550610382338560025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661071d9092919063ffffffff16565b3373ffffffffffffffffffffffffffffffffffffffff167fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a856040516103c89190610eb0565b60405180910390a250505050565b6103de61079c565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361044c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161044390610f39565b60405180910390fd5b5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016104a79190610c77565b602060405180830381865afa1580156104c2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104e69190610f6b565b90505f811161052a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161052190611006565b60405180910390fd5b610576828260025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661071d9092919063ffffffff16565b8173ffffffffffffffffffffffffffffffffffffffff167f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d5826040516105bc9190610eb0565b60405180910390a25050565b6105d061079c565b6105d95f610823565b565b6003602052805f5260405f205f915054906101000a900460ff1681565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b61064c61079c565b80600181905550807f90004c04698bc3322499a575ed3752dd4abf33e0a7294c06a787a0fe01bea94160405160405180910390a250565b61068b61079c565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036106fb575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016106f29190610c77565b60405180910390fd5b61070481610823565b50565b5f8261071385846108e4565b1490509392505050565b610797838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb8585604051602401610750929190611024565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050610932565b505050565b6107a46109cd565b73ffffffffffffffffffffffffffffffffffffffff166107c261061d565b73ffffffffffffffffffffffffffffffffffffffff1614610821576107e56109cd565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016108189190610c77565b60405180910390fd5b565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f808290505f5b8451811015610927576109188286838151811061090b5761090a61104b565b5b60200260200101516109d4565b915080806001019150506108eb565b508091505092915050565b5f8060205f8451602086015f885af180610951576040513d5f823e3d81fd5b3d92505f519150505f821461096a576001811415610985565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b156109c757836040517f5274afe70000000000000000000000000000000000000000000000000000000081526004016109be9190610c77565b60405180910390fd5b50505050565b5f33905090565b5f8183106109eb576109e682846109fe565b6109f6565b6109f583836109fe565b5b905092915050565b5f825f528160205260405f20905092915050565b5f819050919050565b610a2481610a12565b82525050565b5f602082019050610a3d5f830184610a1b565b92915050565b5f80fd5b5f80fd5b5f819050919050565b610a5d81610a4b565b8114610a67575f80fd5b50565b5f81359050610a7881610a54565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f840112610a9f57610a9e610a7e565b5b8235905067ffffffffffffffff811115610abc57610abb610a82565b5b602083019150836020820283011115610ad857610ad7610a86565b5b9250929050565b5f805f60408486031215610af657610af5610a43565b5b5f610b0386828701610a6a565b935050602084013567ffffffffffffffff811115610b2457610b23610a47565b5b610b3086828701610a8a565b92509250509250925092565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f610b6582610b3c565b9050919050565b610b7581610b5b565b8114610b7f575f80fd5b50565b5f81359050610b9081610b6c565b92915050565b5f60208284031215610bab57610baa610a43565b5b5f610bb884828501610b82565b91505092915050565b5f8115159050919050565b610bd581610bc1565b82525050565b5f602082019050610bee5f830184610bcc565b92915050565b5f819050919050565b5f610c17610c12610c0d84610b3c565b610bf4565b610b3c565b9050919050565b5f610c2882610bfd565b9050919050565b5f610c3982610c1e565b9050919050565b610c4981610c2f565b82525050565b5f602082019050610c625f830184610c40565b92915050565b610c7181610b5b565b82525050565b5f602082019050610c8a5f830184610c68565b92915050565b610c9981610a12565b8114610ca3575f80fd5b50565b5f81359050610cb481610c90565b92915050565b5f60208284031215610ccf57610cce610a43565b5b5f610cdc84828501610ca6565b91505092915050565b5f82825260208201905092915050565b7f5461696b6f4d65726b6c654469737472696275746f723a20416c7265616479205f8201527f636c61696d65642e000000000000000000000000000000000000000000000000602082015250565b5f610d4f602883610ce5565b9150610d5a82610cf5565b604082019050919050565b5f6020820190508181035f830152610d7c81610d43565b9050919050565b5f8160601b9050919050565b5f610d9982610d83565b9050919050565b5f610daa82610d8f565b9050919050565b610dc2610dbd82610b5b565b610da0565b82525050565b5f819050919050565b610de2610ddd82610a4b565b610dc8565b82525050565b5f610df38285610db1565b601482019150610e038284610dd1565b6020820191508190509392505050565b7f5461696b6f4d65726b6c654469737472696275746f723a20496e76616c6964205f8201527f70726f6f662e0000000000000000000000000000000000000000000000000000602082015250565b5f610e6d602683610ce5565b9150610e7882610e13565b604082019050919050565b5f6020820190508181035f830152610e9a81610e61565b9050919050565b610eaa81610a4b565b82525050565b5f602082019050610ec35f830184610ea1565b92915050565b7f5461696b6f4d65726b6c654469737472696275746f723a20496e76616c6964205f8201527f616464726573732e000000000000000000000000000000000000000000000000602082015250565b5f610f23602883610ce5565b9150610f2e82610ec9565b604082019050919050565b5f6020820190508181035f830152610f5081610f17565b9050919050565b5f81519050610f6581610a54565b92915050565b5f60208284031215610f8057610f7f610a43565b5b5f610f8d84828501610f57565b91505092915050565b7f5461696b6f4d65726b6c654469737472696275746f723a204e6f20746f6b656e5f8201527f7320746f2077697468647261772e000000000000000000000000000000000000602082015250565b5f610ff0602e83610ce5565b9150610ffb82610f96565b604082019050919050565b5f6020820190508181035f83015261101d81610fe4565b9050919050565b5f6040820190506110375f830185610c68565b6110446020830184610ea1565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffdfea264697066735822122071ce5ff84ad4fc6152017b16ab5c28ed291c3ebd00aa9cb084f09719cb687f4b64736f6c634300081a0033000000000000000000000000a9d23408b9ba935c230493c40c73824df71a0975
Deployed ByteCode
0x608060405234801561000f575f80fd5b5060043610610091575f3560e01c806373b2e80e1161006457806373b2e80e146100f55780638b68c4a9146101255780638da5cb5b14610143578063dab5f34014610161578063f2fde38b1461017d57610091565b80632eb4a7ab146100955780632f52ebb7146100b357806351cff8d9146100cf578063715018a6146100eb575b5f80fd5b61009d610199565b6040516100aa9190610a2a565b60405180910390f35b6100cd60048036038101906100c89190610adf565b61019f565b005b6100e960048036038101906100e49190610b96565b6103d6565b005b6100f36105c8565b005b61010f600480360381019061010a9190610b96565b6105db565b60405161011c9190610bdb565b60405180910390f35b61012d6105f8565b60405161013a9190610c4f565b60405180910390f35b61014b61061d565b6040516101589190610c77565b60405180910390f35b61017b60048036038101906101769190610cba565b610644565b005b61019760048036038101906101929190610b96565b610683565b005b60015481565b60035f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615610229576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161022090610d65565b60405180910390fd5b5f338460405160200161023d929190610de8565b6040516020818303038152906040528051906020012090506102a28383808060200260200160405190810160405280939291908181526020018383602002808284375f81840152601f19601f8201169050808301925050505050505060015483610707565b6102e1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102d890610e83565b60405180910390fd5b600160035f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff021916908315150217905550610382338560025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661071d9092919063ffffffff16565b3373ffffffffffffffffffffffffffffffffffffffff167fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a856040516103c89190610eb0565b60405180910390a250505050565b6103de61079c565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361044c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161044390610f39565b60405180910390fd5b5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016104a79190610c77565b602060405180830381865afa1580156104c2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104e69190610f6b565b90505f811161052a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161052190611006565b60405180910390fd5b610576828260025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661071d9092919063ffffffff16565b8173ffffffffffffffffffffffffffffffffffffffff167f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d5826040516105bc9190610eb0565b60405180910390a25050565b6105d061079c565b6105d95f610823565b565b6003602052805f5260405f205f915054906101000a900460ff1681565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b61064c61079c565b80600181905550807f90004c04698bc3322499a575ed3752dd4abf33e0a7294c06a787a0fe01bea94160405160405180910390a250565b61068b61079c565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036106fb575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016106f29190610c77565b60405180910390fd5b61070481610823565b50565b5f8261071385846108e4565b1490509392505050565b610797838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb8585604051602401610750929190611024565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050610932565b505050565b6107a46109cd565b73ffffffffffffffffffffffffffffffffffffffff166107c261061d565b73ffffffffffffffffffffffffffffffffffffffff1614610821576107e56109cd565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016108189190610c77565b60405180910390fd5b565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f808290505f5b8451811015610927576109188286838151811061090b5761090a61104b565b5b60200260200101516109d4565b915080806001019150506108eb565b508091505092915050565b5f8060205f8451602086015f885af180610951576040513d5f823e3d81fd5b3d92505f519150505f821461096a576001811415610985565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b156109c757836040517f5274afe70000000000000000000000000000000000000000000000000000000081526004016109be9190610c77565b60405180910390fd5b50505050565b5f33905090565b5f8183106109eb576109e682846109fe565b6109f6565b6109f583836109fe565b5b905092915050565b5f825f528160205260405f20905092915050565b5f819050919050565b610a2481610a12565b82525050565b5f602082019050610a3d5f830184610a1b565b92915050565b5f80fd5b5f80fd5b5f819050919050565b610a5d81610a4b565b8114610a67575f80fd5b50565b5f81359050610a7881610a54565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f840112610a9f57610a9e610a7e565b5b8235905067ffffffffffffffff811115610abc57610abb610a82565b5b602083019150836020820283011115610ad857610ad7610a86565b5b9250929050565b5f805f60408486031215610af657610af5610a43565b5b5f610b0386828701610a6a565b935050602084013567ffffffffffffffff811115610b2457610b23610a47565b5b610b3086828701610a8a565b92509250509250925092565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f610b6582610b3c565b9050919050565b610b7581610b5b565b8114610b7f575f80fd5b50565b5f81359050610b9081610b6c565b92915050565b5f60208284031215610bab57610baa610a43565b5b5f610bb884828501610b82565b91505092915050565b5f8115159050919050565b610bd581610bc1565b82525050565b5f602082019050610bee5f830184610bcc565b92915050565b5f819050919050565b5f610c17610c12610c0d84610b3c565b610bf4565b610b3c565b9050919050565b5f610c2882610bfd565b9050919050565b5f610c3982610c1e565b9050919050565b610c4981610c2f565b82525050565b5f602082019050610c625f830184610c40565b92915050565b610c7181610b5b565b82525050565b5f602082019050610c8a5f830184610c68565b92915050565b610c9981610a12565b8114610ca3575f80fd5b50565b5f81359050610cb481610c90565b92915050565b5f60208284031215610ccf57610cce610a43565b5b5f610cdc84828501610ca6565b91505092915050565b5f82825260208201905092915050565b7f5461696b6f4d65726b6c654469737472696275746f723a20416c7265616479205f8201527f636c61696d65642e000000000000000000000000000000000000000000000000602082015250565b5f610d4f602883610ce5565b9150610d5a82610cf5565b604082019050919050565b5f6020820190508181035f830152610d7c81610d43565b9050919050565b5f8160601b9050919050565b5f610d9982610d83565b9050919050565b5f610daa82610d8f565b9050919050565b610dc2610dbd82610b5b565b610da0565b82525050565b5f819050919050565b610de2610ddd82610a4b565b610dc8565b82525050565b5f610df38285610db1565b601482019150610e038284610dd1565b6020820191508190509392505050565b7f5461696b6f4d65726b6c654469737472696275746f723a20496e76616c6964205f8201527f70726f6f662e0000000000000000000000000000000000000000000000000000602082015250565b5f610e6d602683610ce5565b9150610e7882610e13565b604082019050919050565b5f6020820190508181035f830152610e9a81610e61565b9050919050565b610eaa81610a4b565b82525050565b5f602082019050610ec35f830184610ea1565b92915050565b7f5461696b6f4d65726b6c654469737472696275746f723a20496e76616c6964205f8201527f616464726573732e000000000000000000000000000000000000000000000000602082015250565b5f610f23602883610ce5565b9150610f2e82610ec9565b604082019050919050565b5f6020820190508181035f830152610f5081610f17565b9050919050565b5f81519050610f6581610a54565b92915050565b5f60208284031215610f8057610f7f610a43565b5b5f610f8d84828501610f57565b91505092915050565b7f5461696b6f4d65726b6c654469737472696275746f723a204e6f20746f6b656e5f8201527f7320746f2077697468647261772e000000000000000000000000000000000000602082015250565b5f610ff0602e83610ce5565b9150610ffb82610f96565b604082019050919050565b5f6020820190508181035f83015261101d81610fe4565b9050919050565b5f6040820190506110375f830185610c68565b6110446020830184610ea1565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffdfea264697066735822122071ce5ff84ad4fc6152017b16ab5c28ed291c3ebd00aa9cb084f09719cb687f4b64736f6c634300081a0033